Combinatorial constructions of packings in Grassmannian spaces

被引:0
|
作者
Tao Zhang
Gennian Ge
机构
[1] Capital Normal University,School of Mathematical Sciences
[2] Zhejiang University,School of Mathematical Sciences
[3] Beijing Center for Mathematics and Information Interdisciplinary Sciences,undefined
来源
关键词
Grassmannian packing; Equiangular line; Difference set; Latin square; Primary: 52C17; Secondary: 14M15; 94B60;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of packing n-dimensional subspaces of m-dimensional Euclidean space such that these subspaces are as far apart as possible was introduced by Conway, Hardin and Sloane. It can be seen as a higher dimensional version of spherical codes or equiangular lines. In this paper, we first give a general construction of equiangular lines, and then present a family of equiangular lines with large size from direct product difference sets. Meanwhile, for packing higher dimensional subspaces, we give three constructions of optimal packings in Grassmannian spaces based on difference sets and Latin squares. As a consequence, we obtain many new classes of optimal Grassmannian packings.
引用
收藏
页码:803 / 815
页数:12
相关论文
共 50 条
  • [41] COMPLEXITY OF SOME COMBINATORIAL CONSTRUCTIONS
    CARSTENS, HG
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1977, 23 (02): : 121 - 130
  • [42] MODULAR CONSTRUCTIONS IN COMBINATORIAL GEOMETRIES
    BRYLAWSK.TH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A40 - A40
  • [43] Packings in Real Projective Spaces
    Fickus, Matthew
    Jasper, John
    Mixon, Dustin G.
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2018, 2 (03): : 377 - 409
  • [44] A COMBINATORIAL STUDY OF AFFINE SCHUBERT VARIETIES IN THE AFFINE GRASSMANNIAN
    Besson, Marc
    Hong, Jiuzu
    TRANSFORMATION GROUPS, 2022, 27 (04) : 1189 - 1221
  • [45] SOME PACKINGS OF PROJECTIVE SPACES
    DENNISTON, RH
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1972, 52 (01): : 36 - +
  • [46] CUBE PACKINGS IN EUCLIDEAN SPACES
    Yu, Han
    MATHEMATIKA, 2021, 67 (02) : 288 - 295
  • [47] COMBINATORIAL SCALAR CURVATURE AND RIGIDITY OF BALL PACKINGS
    Cooper, Daryl
    Rivin, Igor
    MATHEMATICAL RESEARCH LETTERS, 1996, 3 (01) : 51 - 60
  • [48] Beamforming Codebooks for Two Transmit Antenna Systems Based on Optimum Grassmannian Packings
    Pitaval, Renaud-Alexandre
    Maattanen, Helka-Liina
    Schober, Karol
    Tirkkonen, Olav
    Wichman, Risto
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (10) : 6591 - 6602
  • [49] Combinatorial Spaces
    Peck, Robert W.
    MATHEMATICS AND COMPUTATION IN MUSIC (MCM 2022), 2022, : 48 - 60
  • [50] Schubert calculus on the Grassmannian of hermitian lagrangian spaces
    Nicolaescu, Liviu I.
    ADVANCES IN MATHEMATICS, 2010, 224 (06) : 2361 - 2434