ODRP: a new approach for spatial street sign detection from EXIF using deep learning-based object detection, distance estimation, rotation and projection system

被引:0
|
作者
Murat Taşyürek
机构
[1] Kayseri University,Department of Computer Engineering
关键词
Geographical information systems; Spatial detection; Street plate; Exchangeable image file; Spatial estimation with deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Geographical information systems (GIS) are the systems where spatial data are stored and analyzed. The most important raw material in GIS is spatial data. Thus, it is essential to collect and update these data. On the other hand, exchangeable image file (EXIF) format is a special file format that contains camera direction, date-time information and GPS location provided by a digital camera that captures the images. Transferring the objects in EXIF data sets with absolute coordinates on the earth significantly contributes to GIS. In this study, a new hybrid approach, ODPR, which utilizes object detection (O), distance estimation (D), rotation (R) and projection (P) methods, is proposed to detect street sign objects in EXIF with their locations. The performance of the proposed approach has been examined on the natural EXIF data sets obtained from the Kayseri Metropolitan Municipality. In the proposed approach, a deep learning method detects a street sign object in the EXIF. Then, the object’s distance is calculated at the point where the photograph is taken. Finally, the spatial location of the detected object on the earth is calculated using distance, direction and GPS data with rotation and projection methods. In the proposed ODRP approach, the performances of convolutional neural network (CNN)-based Faster R-CNN, YOLO V5, YOLO V6 and transformer-based DETR models as deep learning models for object detection are examined. The F1 score metric is widely used to examine the performance of methods in deep learning models. The performances of the proposed approaches are reviewed according to the F1 score values, and ODRP Faster R-CNN, YOLO V5, YOLO V6 and DETR approaches achieved F1 scores of 0.909, 0.956, 0.948 and 0.922, respectively. In addition, to overcome the variability of light and background mixing problems, an improved supervised learning method (ISL) is proposed. Thanks to ISL, ODRP Faster R-CNN, YOLO V5, YOLO V6, and DETR approaches have reached 0.965, 0.985, 0.969 and 0.942 f1 scores, respectively. The proposed ODRP Faster R-CNN, YOLO V5, YOLO V6 and DETR approaches found the location of the street sign object to be 11434.76, 12818.39, 12454.63 and 9843.57 ms closer to its position on earth than the classical method, which considers the location of the EXIF, respectively. Regarding time cost, the ODRP Faster R-CNN, YOLO V5, YOLO V6 and DETR analyze EXIF data at an average of 0.99, 0.42, 0.41 and 0.53 s, respectively. The run time of the ODRP YOLO V5 and V6 approaches is almost equal to each other, and it works approximately 2.5 times faster than the ODRP Faster R-CNN method. Consequently, ODRP YOLO V5 outperforms ODRP Faster R-CNN, YOLO V6 and DETR for detecting the spatial location of street sign objects in EXIF and the F1 score.
引用
收藏
页码:983 / 1003
页数:20
相关论文
共 50 条
  • [41] Malicious Attacks Detection in Crowded Areas Using Deep Learning-Based Approach
    Harrou, Fouzi
    Hittawe, Mohamad Mazen
    Sun, Ying
    Beya, Ouadi
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2020, 23 (05) : 57 - 62
  • [42] A deep learning-based approach for software vulnerability detection using code metrics
    Subhan, Fazli
    Wu, Xiaoxue
    Bo, Lili
    Sun, Xiaobing
    Rahman, Muhammad
    IET SOFTWARE, 2022, 16 (05) : 516 - 526
  • [43] Public Social Distance Monitoring System Using Object Detection YOLO Deep Learning Algorithm
    Vijayan R.
    Mareeswari V.
    Pople V.
    SN Computer Science, 4 (6)
  • [44] Malicious attacks detection in crowded areas using deep learning-based approach
    Harrou, Fouzi
    Hittawe, Mohamad Mazen
    Sun, Ying
    Beya, Ouadi
    1600, Institute of Electrical and Electronics Engineers Inc. (23): : 57 - 62
  • [45] A Fruit Ripeness Detection Method using Adapted Deep Learning-based Approach
    Zhang, Weiwei
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (09) : 1163 - 1169
  • [46] A deep learning-based approach for crack damage detection using strain field
    Huang, Zekai
    Chang, Dongdong
    Yang, Xiaofa
    Zuo, Hong
    ENGINEERING FRACTURE MECHANICS, 2023, 293
  • [47] Deep Learning-Based Approach for Sleep Apnea Detection Using Physiological Signals
    Troncoso-Garcia, A. R.
    Martinez-Ballesteros, M.
    Martinez-Alvarez, F.
    Troncoso, A.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT I, 2023, 14134 : 626 - 637
  • [48] Effect of slab thickness on pulmonary nodule detection using maximum intensity projection in a deep learning-based computer-aided detection system
    Zheng, Sunyi
    Cui, Xiaonan
    Vonder, Marleen
    Veldhuis, Raymond
    Dorrius, Monique
    Ye, Zhaoxiang
    Vliegenthart, Rozemarijn
    Oudkerk, Matthijs
    Van Ooijen, Peter
    EUROPEAN RESPIRATORY JOURNAL, 2020, 56
  • [49] Distributed system anomaly detection using deep learning-based log analysis
    Han, Pengfei
    Li, Huakang
    Xue, Gang
    Zhang, Chao
    COMPUTATIONAL INTELLIGENCE, 2023, 39 (03) : 433 - 455
  • [50] A New Deep Learning-Based Methodology for Video Deepfake Detection Using XGBoost
    Ismail, Aya
    Elpeltagy, Marwa
    S. Zaki, Mervat
    Eldahshan, Kamal
    SENSORS, 2021, 21 (16)