Functional classwise principal component analysis: a classification framework for functional data analysis

被引:0
|
作者
Avishek Chatterjee
Satyaki Mazumder
Koel Das
机构
[1] IISER Kolkata,Department of Mathematics and Statistics
来源
关键词
Classification; Functional data analysis; Functional principal component analysis; Classwise principal component analysis; Gram–Schmidt orthogonalization;
D O I
暂无
中图分类号
学科分类号
摘要
In recent times, functional data analysis has been successfully applied in the field of high dimensional data classification. In this paper, we present a classification framework using functional data and classwise Principal Component Analysis (PCA). Our proposed method can be used in high dimensional time series data which typically suffers from small sample size problem. Our method extracts a piecewise linear functional feature space and is particularly suitable for hard classification problems. The proposed framework converts time series data into functional data and uses classwise functional PCA for feature extraction followed by classification using a Bayesian linear classifier. We demonstrate the efficacy of our proposed method by applying it to both synthetic data sets and real time series data from diverse fields including but not limited to neuroscience, food science, medical sciences and chemometrics.
引用
收藏
页码:552 / 594
页数:42
相关论文
共 50 条
  • [1] Functional classwise principal component analysis: a classification framework for functional data analysis
    Chatterjee, Avishek
    Mazumder, Satyaki
    Das, Koel
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 37 (02) : 552 - 594
  • [2] Principal component analysis for Hilbertian functional data
    Kim, Dongwoo
    Lee, Young Kyung
    Park, Byeong U.
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (01) : 149 - 161
  • [3] Robust principal component analysis for functional data
    Peña, D
    Prieto, J
    [J]. TEST, 1999, 8 (01) : 56 - 60
  • [4] Functional principal component analysis of fMRI data
    Viviani, R
    Grön, G
    Spitzer, M
    [J]. HUMAN BRAIN MAPPING, 2005, 24 (02) : 109 - 129
  • [5] Robust principal component analysis for functional data
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Graciela Boente
    Ricardo Fraiman
    Babette Brumback
    Christophe Croux
    Jianqing Fan
    Alois Kneip
    John I. Marden
    Daniel Peña
    Javier Prieto
    Jim O. Ramsay
    Mariano J. Valderrama
    Ana M. Aguilera
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    [J]. Test, 1999, 8 (1) : 1 - 73
  • [6] FILTRATED COMMON FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS OF MULTIGROUP FUNCTIONAL DATA
    Jiao, Shuhao
    Frostig, Ron
    Ombao, Hernando
    [J]. ANNALS OF APPLIED STATISTICS, 2024, 18 (02): : 1160 - 1177
  • [7] Principal component analysis of infinite variance functional data
    Kokoszka, Piotr
    Kulik, Rafal
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 193
  • [8] Functional principal component analysis of spatially correlated data
    Chong Liu
    Surajit Ray
    Giles Hooker
    [J]. Statistics and Computing, 2017, 27 : 1639 - 1654
  • [9] Functional principal component analysis of spatially correlated data
    Liu, Chong
    Ray, Surajit
    Hooker, Giles
    [J]. STATISTICS AND COMPUTING, 2017, 27 (06) : 1639 - 1654
  • [10] Robust principal component analysis for functional data - Discussion
    Boente, G
    Fraiman, R
    [J]. TEST, 1999, 8 (01) : 28 - 35