Stability analysis of a whirling rigid rotor supported by stationary grooved FDBs considering the five degrees of freedom of a general rotor-bearing system

被引:0
|
作者
Minho Lee
Jihoon Lee
Gunhee Jang
机构
[1] Hanyang University,PREM, Department of Mechanical Convergence Engineering
来源
Microsystem Technologies | 2015年 / 21卷
关键词
Journal Bearing; Unstable Region; Thrust Bearing; Dynamic Coefficient; Whirling Motion;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a method to determine the stability of a whirling rotor supported by stationary grooved fluid dynamic bearings (FDBs), considering the five degrees of freedom of a general rotor-bearing system. Dynamic coefficients are calculated by using the finite element method and the perturbation method, and they are represented as periodic harmonic functions. Because of the periodic time-varying dynamic coefficients, the equations of motion of the rotor supported by FDBs can be represented as a parametrically excited system. The solution of the equations of motion can be assumed to be a Fourier series, allowing the equations of motion to be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Hill’s infinite determinant is calculated by using these algebraic equations to determine the stability. Increasing rotational speed increases Kxx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{xx}$$\end{document} and Kθxθx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{{\theta_{x} \theta_{x} }}$$\end{document}, which decreases the stability of the stationary grooved FDBs; increasing whirl radius increases the stability of the FDBs because the resulting increases in the averages and variations of Cxx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{xx}$$\end{document} and Cθxθx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{{\theta_{x} \theta_{x} }}$$\end{document} increase the stability faster than the corresponding increases of Kxx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{xx}$$\end{document} and Kθxθx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{{\theta_{x} \theta_{x} }}$$\end{document} decrease the stability. The proposed method was verified by investigating the convergence and divergence of the whirl radius after the equations of motion were solved using the fourth-order Runge–Kutta method.
引用
收藏
页码:2685 / 2696
页数:11
相关论文
共 50 条
  • [31] Linear stability analysis of rotor-bearing system: couple stress fluid model
    Lin, JR
    COMPUTERS & STRUCTURES, 2001, 79 (08) : 801 - 809
  • [32] Stability Analysis of Nonlinear Stiffness Rotor-bearing System with Pedestal Looseness Fault
    Luo, YueGang
    Zhang, SongHe
    Wu, Bin
    Hu, HongYing
    MECHANICAL ENGINEERING, MATERIALS AND ENERGY III, 2014, 483 : 285 - 288
  • [33] STABILITY ANALYSIS OF A COMPLEX GEARED ROTOR-BEARING SYSTEM IN A TURBINE REDUCTION GEARBOX
    Guan, Yuanhong
    Sieveking, Edward W.
    Sampathkumar, Varad
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 4A, 2014,
  • [34] Analysis of motion stability of the flexible rotor-bearing system with two unbalanced disks
    Xie Wenhui
    Tang Yougang
    Chen Yushu
    JOURNAL OF SOUND AND VIBRATION, 2008, 310 (1-2) : 381 - 393
  • [35] Liapunov stability analysis of a rotor-bearing system with a flexible attachment of appendage to shaft
    El Marhomy, AA
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1998, 21 (07) : 605 - 617
  • [36] Dynamic characteristic analysis for rotor-bearing system with Alford force considering blade vibration
    Li B.
    Zhang L.
    Cao Y.-Y.
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2020, 24 (01): : 98 - 107
  • [37] Stability analysis of rubber-supported thrust bearing in a rotor-bearing system used in marine thrusters under disturbing moments
    Sun F.
    Zhang X.
    Wei Y.
    Wang X.
    Wang D.
    Sun, Fangxu (sunfx2013@hotmail.com), 1600, Elsevier Ltd (151):
  • [38] Stability analysis of rubber-supported thrust bearing in a rotor-bearing system used in marine thrusters under disturbing moments
    Sun, Fangxu
    Zhang, Xianbiao
    Wei, Yingsan
    Wang, Xing
    Wang, Dong
    TRIBOLOGY INTERNATIONAL, 2020, 151
  • [39] Nonlinear Dynamic Analysis of a Rigid Rotor Supported By a Spiral-Grooved Opposed-Hemisphere Gas Bearing
    Du, Jianjun
    Yang, Guangwei
    Ge, Weiping
    Liu, Tun
    TRIBOLOGY TRANSACTIONS, 2016, 59 (05) : 781 - 800
  • [40] Dynamic modeling and stability analysis of a rotor-bearing system with bolted-disk joint
    Li, Yuqi
    Luo, Zhong
    Liu, Jiaxi
    Ma, Hui
    Yang, Dongsheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 158