Groups whose non-normal subgroups have a transitive normality relation

被引:0
|
作者
Russo A. [1 ]
Vincenzi G. [2 ]
机构
[1] Dipartimento di Matematica, Università di Lecce, 73100 Lecce, Via Arnesano-Lecce I
[2] Dipartimento di Matematica e Informatica, Università di Salerno, 84081 Baronissi Salerno, Via S. Allende I
关键词
Sylow Subgroup; Finite Index; Finite Order; Soluble Group; Commutator Subgroup;
D O I
10.1007/BF02844426
中图分类号
学科分类号
摘要
A group is called metahamiltonian if all its non-normal subgroups are abelian. The structure of metahamiltonian groups has been investigated by Romalis and Sesekin. In this paper groups are studied in which every non-normal subgroup has a transitive normality relation. © 2001 Springer.
引用
收藏
页码:477 / 482
页数:5
相关论文
共 50 条
  • [21] Groups whose non-normal subgroups are either nilpotent or minimal non-nilpotent
    Dastborhan, Nasrin
    Mousavi, Hamid
    RICERCHE DI MATEMATICA, 2024, : 869 - 882
  • [22] FINITE GROUPS ALL OF WHOSE NON-NORMAL SUBGROUPS POSSESS THE SAME ORDER
    Zhang, Junqiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (03)
  • [23] On Groups whose Non-Normal Subgroups are either Contranormal or Core-Free
    Kurdachenko, L. A.
    Pypka, A. A.
    Subbotin, I. Ya
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2020, 10 : 83 - 125
  • [24] GROUPS WITH RESTRICTED NON-NORMAL SUBGROUPS
    BRUNO, B
    PHILLIPS, RE
    MATHEMATISCHE ZEITSCHRIFT, 1981, 176 (02) : 199 - 221
  • [25] Groups with polycyclic non-normal subgroups
    Franciosi, S
    de Giovanni, F
    Newell, ML
    ALGEBRA COLLOQUIUM, 2000, 7 (01) : 33 - 42
  • [26] Groups with Supersoluble Non-normal Subgroups
    De Falco, Maria
    Martusciello, Maria
    Musella, Carmelo
    ALGEBRA COLLOQUIUM, 2016, 23 (02) : 213 - 218
  • [27] Finite groups in which the normal closures of non-normal subgroups have the same order
    Wang, Lifang
    Qu, Haipeng
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (07)
  • [28] A note on groups whose non-normal subgroups are either abelian or minimal non-abelian
    Atlihan, Sevgi
    de Giovanni, Francesco
    RICERCHE DI MATEMATICA, 2018, 67 (02) : 891 - 898
  • [29] A note on groups whose non-normal subgroups are either abelian or minimal non-abelian
    Sevgi Atlıhan
    Francesco de Giovanni
    Ricerche di Matematica, 2018, 67 : 891 - 898
  • [30] FINITE p-GROUPS ALL OF WHOSE NON-NORMAL ABELIAN SUBGROUPS ARE CYCLIC
    Zhang, Lihua
    Zhang, Junqiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (08)