Groups whose non-normal subgroups have a transitive normality relation

被引:0
|
作者
Russo A. [1 ]
Vincenzi G. [2 ]
机构
[1] Dipartimento di Matematica, Università di Lecce, 73100 Lecce, Via Arnesano-Lecce I
[2] Dipartimento di Matematica e Informatica, Università di Salerno, 84081 Baronissi Salerno, Via S. Allende I
关键词
Sylow Subgroup; Finite Index; Finite Order; Soluble Group; Commutator Subgroup;
D O I
10.1007/BF02844426
中图分类号
学科分类号
摘要
A group is called metahamiltonian if all its non-normal subgroups are abelian. The structure of metahamiltonian groups has been investigated by Romalis and Sesekin. In this paper groups are studied in which every non-normal subgroup has a transitive normality relation. © 2001 Springer.
引用
收藏
页码:477 / 482
页数:5
相关论文
共 50 条
  • [1] Groups whose non-subnormal subgroups have a transitive normality relation
    de Giovanni, F
    Russo, A
    Vincenzi, G
    BULLETIN BRAZILIAN MATHEMATICAL SOCIETY, 2003, 34 (02): : 219 - 229
  • [2] Groups whose non-subnormal subgroups have a transitive normality relation
    F. de Giovanni
    A. Russo
    G. Vincenzi
    Bulletin of the Brazilian Mathematical Society, 2003, 34 : 219 - 229
  • [3] Groups whose Proper Subgroups of Infinite Rank Have a Transitive Normality Relation
    De Falco, Maria
    de Giovanni, Francesco
    Musella, Carmela
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (04) : 1999 - 2006
  • [4] A NOTE ON GROUPS WHOSE PROPER LARGE SUBGROUPS HAVE A TRANSITIVE NORMALITY RELATION
    De Giovanni, Francesco
    Trombetti, Marco
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 95 (01) : 38 - 47
  • [5] Groups whose Proper Subgroups of Infinite Rank Have a Transitive Normality Relation
    Maria De Falco
    Francesco de Giovanni
    Carmela Musella
    Mediterranean Journal of Mathematics, 2013, 10 : 1999 - 2006
  • [6] Groups whose non-normal subgroups have small commutator subgroup
    De Falco, M.
    de Giovanni, F.
    Musella, C.
    ALGEBRA & DISCRETE MATHEMATICS, 2007, (03): : 46 - 58
  • [7] GROUPS WHOSE FINITE QUOTIENTS HAVE A TRANSITIVE NORMALITY RELATION
    FRANCIOSI, S
    DEGIOVANNI, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1992, 6B (02): : 329 - 350
  • [8] GROUPS WHOSE HOMOMORPHIC IMAGES HAVE A TRANSITIVE NORMALITY RELATION
    ROBINSON, DJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 176 (449) : 181 - 213
  • [10] Finite p-groups whose non-normal subgroups have few orders
    Lijian An
    Frontiers of Mathematics in China, 2018, 13 : 763 - 777