Li-Yau Harnack Estimates for a Heat-Type Equation Under the Geometric Flow

被引:0
|
作者
Yi Li
Xiaorui Zhu
机构
[1] Universite du Luxembourg,Faculty of Science, Technology and Communication (FSTC), Mathematic Research Unit, Campus Belval
[2] Maison du Nombre,undefined
[3] China Maritime Police Academy,undefined
来源
Potential Analysis | 2020年 / 52卷
关键词
Nonlinear parabolic equation; Harnack estimate; Geometric flow; Primary 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the gradient estimates for a postive solution of the nonlinear parabolic equation ∂tu = Δtu + hup on a Riemannian manifold whose metrics evolve under the geometric flow ∂tg(t) = − 2Sg(t). To obtain these estimate, we introduce a quantity S̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\underline {\boldsymbol {S}}$\end{document} along the flow which measures whether the tensor Sij satisfies the second contracted Bianchi identity. Under conditions on Ricg(t),Sg(t), and S̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\underline {\boldsymbol {S}}$\end{document}, we obtain the gradient estimates.
引用
收藏
页码:469 / 496
页数:27
相关论文
共 50 条