Counting invariant components of hyperelliptic translation surfaces

被引:0
|
作者
Kathryn A. Lindsey
机构
[1] Cornell University,Department of Mathematics
来源
关键词
Modulus Space; Periodic Component; Cone Point; Weierstrass Point; Translation Surface;
D O I
暂无
中图分类号
学科分类号
摘要
The flow in a fixed direction on a translation surface S determines a decomposition of S into closed invariant sets, each of which is either periodic or minimal. We study this decomposition for translation surfaces in the hyperelliptic connected components Hhyp(2g − 2) and Hhyp(g − 1, g − 1) of the corresponding strata of the moduli space of translation surfaces. Specifically, we characterize the pairs of nonnegative integers (p,m) for which there exists a translation surface in Hhyp(2g−2) or Hhyp(g−1, g−1) with precisely p periodic components and m minimal components. This extends results by Naveh ([Nav08]), who obtained tight upper bounds on numbers of invariant components for each stratum.
引用
收藏
页码:125 / 146
页数:21
相关论文
共 50 条
  • [21] Dissertation on hyperelliptic surfaces. VIII. Type 3 regular hyperelliptic surfaces
    Enriques, MMF
    Severi, F
    [J]. ACTA MATHEMATICA, 1910, 33 (04) : 321 - 403
  • [22] Rotation and Translation Invariant 3D Descriptor for Surfaces
    Hampp, Joshua
    Bormann, Richard
    [J]. 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 709 - 716
  • [23] SURFACES WITH A HYPERELLIPTIC HYPERPLANE SECTION
    EIN, L
    [J]. DUKE MATHEMATICAL JOURNAL, 1983, 50 (03) : 685 - 694
  • [24] SMOOTH COVERINGS OF HYPERELLIPTIC SURFACES
    MACLACHLAN, C
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1971, 22 (85): : 117 - +
  • [25] TRANSLATION INVARIANT SURFACES IN THE 3-DIMENSIONAL HEISENBERG GROUP
    Yoon, D. W.
    Lee, J. W.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (06) : 1373 - 1385
  • [26] Visual Inspection of Textile Surfaces with Translation Invariant Wavelet Shrinkage
    Fujiwara, Hisanaga
    Zhang, Zhong
    Hatta, Hiroyuki
    Koshimizu, Hiroyasu
    [J]. IECON 2004: 30TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOL 2, 2004, : 1252 - 1257
  • [27] Degree of irrationality of hyperelliptic surfaces
    Yoshihara, H
    [J]. ALGEBRA COLLOQUIUM, 2000, 7 (03) : 319 - 328
  • [28] Lengths spectrum of hyperelliptic components
    Boissy, Corentin
    Lanneau, Erwan
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (06) : 1839 - 1892
  • [29] MINIMAL MODELS ON HYPERELLIPTIC SURFACES
    CRNKOVIC, C
    SOTKOV, GM
    STANISHKOV, M
    [J]. PHYSICS LETTERS B, 1989, 220 (03) : 397 - 405
  • [30] Counting hyperelliptic curves that admit a Koblitz model
    Demirkiran, Cevahir
    Nart, Enric
    [J]. JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2008, 2 (02) : 163 - 179