Modeling of Coupled Thermo-Hydro-Mechanical Processes with Links to Geochemistry Associated with Bentonite-Backfilled Repository Tunnels in Clay Formations

被引:0
|
作者
Jonny Rutqvist
Liange Zheng
Fei Chen
Hui-Hai Liu
Jens Birkholzer
机构
[1] Lawrence Berkeley National Laboratory (LBNL),
来源
关键词
Nuclear waste disposal; Modeling; Coupled processes; Geomechanics; Geochemistry; Clay; Shale; Bentonite;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents simulation results related to coupled thermal–hydraulic–mechanical (THM) processes in engineered barrier systems (EBS) and clay host rock, in one case considering a possible link to geochemistry. This study is part of the US DOE Office of Nuclear Energy’s used fuel disposition campaign, to investigate current modeling capabilities and to identify issues and knowledge gaps associated with coupled THMC processes and EBS–rock interactions associated with repositories hosted in clay rock. In this study, we simulated a generic repository case assuming an EBS design with waste emplacement in horizontal tunnels that are back-filled with bentonite-based swelling clay as a protective buffer and heat load, derived for one type of US reactor spent fuel. We adopted the Barcelona basic model (BBM) for modeling of the geomechanical behavior of the bentonite, using properties corresponding to the FEBEX bentonite, and we used clay host rock properties derived from the Opalinus clay at Mont Terri, Switzerland. We present results related to EBS host–rock interactions and geomechanical performance in general, as well as studies related to peak temperature, buffer resaturation and thermally induced pressurization of host rock pore water, and swelling pressure change owing to variation of chemical composition in the EBS. Our initial THM modeling results show strong THM-driven interactions between the bentonite buffer and the low-permeability host rock. The resaturation of the buffer is delayed as a result of the low rock permeability, and the fluid pressure in the host rock is strongly coupled with the temperature changes, which under certain circumstances could result in a significant increase in pore pressure. Moreover, using the BBM, the bentonite buffer was found to have a rather complex geomechanical behavior that eventually leads to a slightly nonuniform density distribution. Nevertheless, the simulation shows that the swelling of the buffer is functioning to provide an adequate increase in confining stress on the tunnel wall, leading to a stabilization of any failure that may occur during the tunnel excavation. Finally, we describe the application of a possible approach for linking THM processes with chemistry, focusing on the evolution of primary and secondary swelling, in which the secondary swelling is caused by changes in ionic concentration, which in turn is evaluated using a transport simulation model.
引用
收藏
页码:167 / 186
页数:19
相关论文
共 50 条
  • [1] Modeling of Coupled Thermo-Hydro-Mechanical Processes with Links to Geochemistry Associated with Bentonite-Backfilled Repository Tunnels in Clay Formations
    Rutqvist, Jonny
    Zheng, Liange
    Chen, Fei
    Liu, Hui-Hai
    Birkholzer, Jens
    ROCK MECHANICS AND ROCK ENGINEERING, 2014, 47 (01) : 167 - 186
  • [2] Thermo-hydro-mechanical modeling of coupled processes in clay materials
    Maßmann, Jobst
    Ziefle, Gesa
    Kohlmeier, Martin
    Zielke, Werner
    Lecture Notes in Applied and Computational Mechanics, 2011, 57 : 29 - 74
  • [3] Coupled thermo-hydro-mechanical processes in the near field of a high-level radioactive waste repository in clay formations
    Tsang, C. F.
    Barnichon, J. D.
    Birkholzer, J.
    Li, X. L.
    Liu, H. H.
    Sillen, X.
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2012, 49 : 31 - 44
  • [4] Study on coupled thermo-hydro-mechanical processes in column bentonite test
    Pan, Peng-Zhi
    Yan, Fei
    Feng, Xia-Ting
    Wu, Zhen-Hua
    ENVIRONMENTAL EARTH SCIENCES, 2017, 76 (17)
  • [5] Study on coupled thermo-hydro-mechanical processes in column bentonite test
    Peng-Zhi Pan
    Fei Yan
    Xia-Ting Feng
    Zhen-Hua Wu
    Environmental Earth Sciences, 2017, 76
  • [6] Coupled Thermo-Hydro-Mechanical Modeling of Saturated Boom Clay
    Tamizdoust, Mohammadreza Mir
    Ghasemi-Fare, Omid
    GEO-SYSTEMS, SUSTAINABILITY, GEOENVIRONMENTAL ENGINEERING, AND UNSATURATED SOIL MECHANICS (GEO-CONGRESS 2020), 2020, (319): : 340 - 348
  • [7] Coupled thermo-hydro-mechanical study on GMZ bentonite
    Cao, S. F.
    Qiao, L.
    Liu, Y. M.
    Xie, J. L.
    Ma, L. K.
    ROCK MECHANICS: ACHIEVEMENTS AND AMBITIONS, 2012, : 593 - 596
  • [8] Correction to: Study on coupled thermo-hydro-mechanical processes in column bentonite test
    Peng-Zhi Pan
    Fei Yan
    Xia-Ting Feng
    Zhen-Hua Wu
    Environmental Earth Sciences, 2018, 77
  • [9] Coupled thermo-hydro-mechanical modelling of bentonite buffer material
    Kanno, T
    Fujita, T
    Takeuchi, S
    Ishikawa, H
    Hara, K
    Nakano, M
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 1999, 23 (12) : 1281 - 1307
  • [10] A simulator for modeling coupled thermo-hydro-mechanical processes in subsurface geological media
    Kelkar, S.
    Lewis, K.
    Karra, S.
    Zyvoloski, G.
    Rapaka, S.
    Viswanathan, H.
    Mishra, P. K.
    Chu, S.
    Coblentz, D.
    Pawar, R.
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2014, 70 : 569 - 580