Pan-cancer analysis demonstrates that integrating polygenic risk scores with modifiable risk factors improves risk prediction

被引:0
|
作者
Linda Kachuri
Rebecca E. Graff
Karl Smith-Byrne
Travis J. Meyers
Sara R. Rashkin
Elad Ziv
John S. Witte
Mattias Johansson
机构
[1] University of California,Department of Epidemiology and Biostatistics
[2] San Francisco,Genetic Epidemiology Group, Section of Genetics
[3] International Agency for Research on Cancer,Department of Medicine
[4] University of California,Helen Diller Family Comprehensive Cancer Center
[5] San Francisco,Institute for Human Genetics
[6] University of California,Department of Urology
[7] San Francisco,undefined
[8] University of California,undefined
[9] San Francisco,undefined
[10] University of California,undefined
[11] San Francisco,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cancer risk is determined by a complex interplay of environmental and heritable factors. Polygenic risk scores (PRS) provide a personalized genetic susceptibility profile that may be leveraged for disease prediction. Using data from the UK Biobank (413,753 individuals; 22,755 incident cancer cases), we quantify the added predictive value of integrating cancer-specific PRS with family history and modifiable risk factors for 16 cancers. We show that incorporating PRS measurably improves prediction accuracy for most cancers, but the magnitude of this improvement varies substantially. We also demonstrate that stratifying on levels of PRS identifies significantly divergent 5-year risk trajectories after accounting for family history and modifiable risk factors. At the population level, the top 20% of the PRS distribution accounts for 4.0% to 30.3% of incident cancer cases, exceeding the impact of many lifestyle-related factors. In summary, this study illustrates the potential for improving cancer risk assessment by integrating genetic risk scores.
引用
收藏
相关论文
共 50 条
  • [31] Polygenic risk scores in prostate cancer
    Eeles, R.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1054 - 1055
  • [32] Improvement of a clinical colorectal cancer risk prediction model integrating polygenic risk.
    Tuff, Erika Leigh Spaeth
    Gafni, Aviv
    Dite, Gillian S.
    Allman, Richard
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 : 81 - 81
  • [33] Development of a Breast Cancer Risk Prediction Model Integrating Monogenic, Polygenic, and Epidemiologic Risk
    Kalia, Sarah S.
    Boddicker, Nicholas J.
    Yadav, Siddhartha
    Huang, Hongyan
    Na, Jie
    Hu, Chunling
    Ambrosone, Christine B.
    Yao, Song
    Haiman, Christopher A.
    Chen, Fei
    John, Esther M.
    Kurian, Allison W.
    Guo, Boya
    Lindstrom, Sara
    Auer, Paul
    Lacey, James V.
    Neuhausen, Susan L.
    Martinez, Maria Elena
    Sandler, Dale P.
    O'Brien, Katie M.
    Taylor, Jack A.
    Teras, Lauren R.
    Hodge, James M.
    Lori, Adriana
    Bodelon, Clara
    Trentham-Dietz, Amy
    Burnside, Elizabeth S.
    Vachon, Celine M.
    Winham, Stacey J.
    Goldgar, David E.
    Domchek, Susan M.
    Nathanson, Katherine L.
    Weitzel, Jeffrey N.
    Couch, Fergus J.
    Kraft, Peter
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2024, 33 (11) : 1490 - 1499
  • [34] Polygenic risk scores for prediction of atrial fibrillation
    Kavousi, Maryam
    Ellinor, Patrick T. T.
    NETHERLANDS HEART JOURNAL, 2023, 31 (01) : 1 - 2
  • [35] Polygenic risk scores and the prediction of common diseases
    Ala-Korpela, Mika
    Holmes, Michael V.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2020, 49 (01) : 1 - 3
  • [36] Polygenic risk scores for prediction of atrial fibrillation
    Maryam Kavousi
    Patrick T. Ellinor
    Netherlands Heart Journal, 2023, 31 (1) : 1 - 2
  • [37] Polygenic risk scores for the prediction of cardiometabolic disease
    O'Sullivan, Jack W.
    Ashley, Euan A.
    Elliott, Perry M.
    EUROPEAN HEART JOURNAL, 2023, 44 (02) : 89 - 99
  • [38] On polygenic risk scores for complex traits prediction
    Zhao, Bingxin
    Zou, Fei
    BIOMETRICS, 2022, 78 (02) : 499 - 511
  • [39] Performance of polygenic risk scores in screening, prediction, and risk stratification: secondary analysis of data in the Polygenic Score Catalog
    Hingorani, Aroon D.
    Gratton, Jasmine
    Finan, Chris
    Schmidt, A. Floriaan
    Patel, Riyaz
    Sofat, Reecha
    Kuan, Valerie
    Langenberg, Claudia
    Hemingway, Harry
    Morris, Joan K.
    Wald, Nicholas J.
    BMJ MEDICINE, 2023, 2 (01):
  • [40] Clinical Implications of Integrating Polygenic Risk Into Established Cardiovascular Disease Risk Scores
    Riveros-Mckay, Fernando
    Selzam, Saskia
    Seth, Priyanka
    Moore, Rachel
    Tarran, William A.
    O'Sullivan, Jack W.
    Ashley, Euan A.
    McVean, Gilean
    Plagnol, Vincent
    Donnelly, Peter
    Weale, Michael E.
    CIRCULATION, 2021, 144