Theoretical Model of Helium Bubble Growth and Density in Plasma-Facing Metals

被引:0
|
作者
Karl D. Hammond
Dimitrios Maroudas
Brian D. Wirth
机构
[1] University of Missouri,Department of Biomedical, Biological, and Chemical Engineering
[2] University of Missouri,Nuclear Engineering Program
[3] University of Massachusetts,Department of Chemical Engineering
[4] University of Tennessee,Department of Nuclear Engineering
[5] Oak Ridge National Laboratory,Fusion Energy Division
来源
Scientific Reports | / 10卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present a theoretically-motivated model of helium bubble density as a function of volume for high-pressure helium bubbles in plasma-facing tungsten. The model is a good match to the empirical correlation we published previously [Hammond et al., Acta Mater. 144, 561–578 (2018)] for small bubbles, but the current model uses no adjustable parameters. The model is likely applicable to significantly larger bubbles than the ones examined here, and its assumptions can be extended trivially to other metals and gases. We expect the model to be broadly applicable and useful in coarse-grained models of gas transport in metals.
引用
收藏
相关论文
共 50 条
  • [41] Physical Properties and Effect of Helium-Vacancy Pair on Tungsten/Graphene Composite as Plasma-Facing Materials from First Principles
    Yan, Qizhen
    Zhang, Zhaochun
    Guo, Haibo
    Yang, Wang
    FUSION SCIENCE AND TECHNOLOGY, 2024, 80 (02) : 178 - 195
  • [42] Ultrafine tungsten as a plasma-facing component in fusion devices: effect of high flux, high fluence low energy helium irradiation
    El-Atwani, O.
    Gonderman, Sean
    Efe, Mert
    De Temmerman, Gregory
    Morgan, Thomas
    Bystrov, Kirill
    Klenosky, Daniel
    Qiu, Tian
    Allain, J. P.
    NUCLEAR FUSION, 2014, 54 (08)
  • [43] Theoretical analysis of deuterium retention in tungsten plasma-facing components induced by various traps via thermal desorption spectroscopy
    Guterl, J.
    Smirnov, R. D.
    Krasheninnikov, S. I.
    Zibrov, M.
    Pisarev, A. A.
    NUCLEAR FUSION, 2015, 55 (09)
  • [44] A dislocation-based crystal viscoplasticity model with application to micro-engineered plasma-facing materials
    Rivera, David
    Huang, Yue
    Po, Giacomo
    Ghoniem, Nasr M.
    JOURNAL OF NUCLEAR MATERIALS, 2017, 485 : 231 - 242
  • [45] Helium-plasma-induced straight nanofiber growth on HCP metals
    Kajita, Shin
    Nojima, Tomohiro
    Okuyama, Tatsuki
    Yamamoto, Yuta
    Yoshida, Naoaki
    Ohno, Noriyasu
    ACTA MATERIALIA, 2019, 181 : 342 - 351
  • [46] Density functional theory and molecular dynamic studies of hydrogen interaction with plasma-facing graphite surfaces and the impact of boron doping
    Ferro, Y
    Jelea, A
    Marinelli, F
    Brosset, C
    Allouche, A
    JOURNAL OF NUCLEAR MATERIALS, 2005, 337 (1-3) : 897 - 901
  • [47] Liquid metals as a divertor plasma-facing material explored using the Pilot-PSI and Magnum-PSI linear devices
    Morgan, T. W.
    Rindt, P.
    van Eden, G. G.
    Kvon, V.
    Jaworksi, M. A.
    Cardozo, N. J. Lopes
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (01)
  • [48] Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten (vol 116, pg 143301, 2014)
    Hammond, Karl D.
    Wirth, Brian D.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (22)
  • [49] Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads
    Ritz, G.
    Hirai, T.
    Norajitra, P.
    Reiser, J.
    Giniyatulin, R.
    Makhankov, A.
    Mazul, I.
    Pintsuk, G.
    Linke, J.
    PHYSICA SCRIPTA, 2009, T138
  • [50] Low recycling and high power density handling physics in the Current Drive Experiment-Upgrade with lithium plasma-facing components
    Kaita, R.
    Majeski, R.
    Gray, T.
    Kugel, H.
    Mansfield, D.
    Spaleta, J.
    Timberlake, J.
    Zakharov, L.
    Doerner, R.
    Lynch, T.
    Maingi, R.
    Soukhanovskii, V.
    PHYSICS OF PLASMAS, 2007, 14 (05)