Schauder theory for Dirichlet elliptic operators in divergence form

被引:0
|
作者
Yoichi Miyazaki
机构
[1] Nihon University,School of Dentistry
来源
关键词
35J40 (35B45); Elliptic operator in divergence form; Dirichlet boundary condition; Schauder estimate; Hölder space; Regularity theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a strongly elliptic operator of order 2m in divergence form with Hölder continuous coefficients of exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma \in (0,1)}$$\end{document} defined in a uniformly C1+σ domain Ω of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document} . Regarding A as an operator from the Hölder space of order m +  σ associated with the Dirichlet data to the Hölder space of order −m +  σ, we show that the inverse (A − λ)−1 exists for λ in a suitable angular region of the complex plane and estimate its operator norms. As an application, we give a regularity theorem for elliptic equations.
引用
收藏
页码:443 / 480
页数:37
相关论文
共 50 条
  • [31] On second-order periodic elliptic operators in divergence form
    ter Elst, AFM
    Robinson, DW
    Sikora, A
    MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (03) : 569 - 637
  • [32] SPECTRAL STABILITY ESTIMATES OF NEUMANN DIVERGENCE FORM ELLIPTIC OPERATORS
    Gol'dshtein, Vladimir
    Pchelintsev, Valerii
    Ukhlov, Alexander
    MATHEMATICAL REPORTS, 2021, 23 (1-2): : 131 - 147
  • [33] On second-order periodic elliptic operators in divergence form
    Ter Elst A.F.M.
    Robinson D.W.
    Sikora A.
    Mathematische Zeitschrift, 2001, 238 (3) : 569 - 637
  • [34] Inequalities for eigenvalues of elliptic operators in divergence form on Riemannian manifolds
    do Carmo, Manfredo P.
    Wang, Qiaoling
    Xia, Changyu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (04) : 643 - 660
  • [35] Onp-elliptic divergence form operators and holomorphic semigroups
    Egert, Moritz
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (03) : 705 - 724
  • [36] Hardy and BMO spaces associated to divergence form elliptic operators
    Steve Hofmann
    Svitlana Mayboroda
    Mathematische Annalen, 2009, 344 : 37 - 116
  • [37] Nonuniformly elliptic Schauder theory
    Cristiana De Filippis
    Giuseppe Mingione
    Inventiones mathematicae, 2023, 234 : 1109 - 1196
  • [38] Dirichlet problem for a divergence form elliptic equation with unbounded coefficients in an unbounded domain
    Chicco M.
    Venturing M.
    Annali di Matematica Pura ed Applicata, 2000, 178 (1) : 325 - 338
  • [39] Fundamental tone estimates for elliptic operators in divergence form and geometric applications
    Bessa, Gregorio P.
    Jorge, Luquesio P.
    Lima, Barnabe P.
    Montenegro, Jose F.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2006, 78 (03): : 391 - 404
  • [40] On non-autonomous maximal regularity for elliptic operators in divergence form
    Pascal Auscher
    Moritz Egert
    Archiv der Mathematik, 2016, 107 : 271 - 284