Schauder theory for Dirichlet elliptic operators in divergence form

被引:0
|
作者
Yoichi Miyazaki
机构
[1] Nihon University,School of Dentistry
来源
关键词
35J40 (35B45); Elliptic operator in divergence form; Dirichlet boundary condition; Schauder estimate; Hölder space; Regularity theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a strongly elliptic operator of order 2m in divergence form with Hölder continuous coefficients of exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma \in (0,1)}$$\end{document} defined in a uniformly C1+σ domain Ω of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document} . Regarding A as an operator from the Hölder space of order m +  σ associated with the Dirichlet data to the Hölder space of order −m +  σ, we show that the inverse (A − λ)−1 exists for λ in a suitable angular region of the complex plane and estimate its operator norms. As an application, we give a regularity theorem for elliptic equations.
引用
收藏
页码:443 / 480
页数:37
相关论文
共 50 条