Numerical solution of Poisson equation with wavelet bases of Hermite cubic splines on the interval

被引:0
|
作者
Jia-wei Xiang
Xue-feng Chen
Xi-kui Li
机构
[1] Guilin University of Electronic Technology,Faculty of Mechanical and Electrical Engineering
[2] Xi’an Jiaotong University,State Key Laboratory for Manufacturing Systems Engineering
[3] Dalian University of Technology,State Key Laboratory of Structural Analysis for Industrial Equipment
来源
关键词
Poisson equation; Hermite cubic spline wavelet; lifting scheme; wavelet-based finite element method; O351.2; 65T60; 65L05; 35F30;
D O I
暂无
中图分类号
学科分类号
摘要
A new wavelet-based finite element method is proposed for solving the Poisson equation. The wavelet bases of Hermite cubic splines on the interval are employed as the multi-scale interpolation basis in the finite element analysis. The lifting scheme of the wavelet-based finite element method is discussed in detail. For the orthogonal characteristics of the wavelet bases with respect to the given inner product, the corresponding multi-scale finite element equation can be decoupled across scales, totally or partially, and suited for nesting approximation. Numerical examples indicate that the proposed method has the higher efficiency and precision in solving the Poisson equation.
引用
收藏
页码:1325 / 1334
页数:9
相关论文
共 50 条
  • [31] THE ACCURATE NUMERICAL SOLUTION OF THE POISSON-BOLTZMANN EQUATION
    GUGGENHEIM, EA
    TRANSACTIONS OF THE FARADAY SOCIETY, 1959, 55 (10): : 1714 - 1724
  • [32] NUMERICAL-SOLUTION OF THE POISSON-BOLTZMANN EQUATION
    JAMES, AE
    WILLIAMS, DJA
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1985, 107 (01) : 44 - 59
  • [33] Accuracy of the numerical solution of the Poisson-Boltzmann equation
    Moreira, IS
    Fernandes, PA
    Ramos, MJ
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2005, 729 (1-2): : 11 - 18
  • [34] Numerical Solution of Poisson Equation on bidimensional irregular domains
    Jalili, Maryam
    SalimiNarm, Samaneh
    2021 52ND ANNUAL IRANIAN MATHEMATICS CONFERENCE (AIMC), 2021, : 34 - 36
  • [35] POLYGONAL SPLINE SPACES AND THE NUMERICAL SOLUTION OF THE POISSON EQUATION
    Floater, Michael S.
    Lai, Ming-Jun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 797 - 824
  • [36] Numerical solution of the Vlasov-Poisson system using generalized Hermite functions
    Le Bourdiec, S.
    de Vuyst, F.
    Jacquet, L.
    COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (08) : 528 - 544
  • [37] Orthogonal cubic splines for the numerical solution of nonlinear parabolic partial differential equations
    Alavi, Javad
    Aminikhah, Hossein
    METHODSX, 2023, 10
  • [38] Numerical solution of the KdV equation by Haar wavelet method
    Oruc, O.
    Bulut, F.
    Esen, A.
    PRAMANA-JOURNAL OF PHYSICS, 2016, 87 (06):
  • [39] A numerical solution of the Burgers' equation using septic B-splines
    Ramadan, MA
    El-Danaf, TS
    Alaal, FEIA
    CHAOS SOLITONS & FRACTALS, 2005, 26 (03) : 795 - 804
  • [40] A numerical solution of the Burgers' equation using septic B-splines
    Ramadan, MA
    El-Danaf, TS
    Alaal, FEI
    CHAOS SOLITONS & FRACTALS, 2005, 26 (04) : 1249 - 1258