Neutron star crustal properties from relativistic mean-field models and bulk parameters effects

被引:0
|
作者
M. Dutra
C. H. Lenzi
W. de Paula
O. Lourenço
机构
[1] Instituto Tecnológico de Aeronáutica,Departamento de Física
[2] DCTA,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We calculate crustal properties of neutron stars, namely, mass (Mcrust\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\mathrm{crust}$$\end{document}), radius (Rcrust\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{crust}$$\end{document}) and fraction of moment of inertia (ΔI/I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I$$\end{document}) from parametrizations of hadronic relativistic mean-field (RMF) model consistent with symmetric and asymmetric nuclear matter constraints, as well as some stellar boundaries. We verify which one are also in agreement with restrictions of ΔI/I⩾1.4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 1.4\%$$\end{document} and ΔI/I⩾7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 7\%$$\end{document} related to the glitching mechanism observed in pulsars, such as the Vela one. The latter constraint explains the glitches phenomenon when entrainment effects are taken into account. Our findings indicate that these parametrizations pass in the glitching limit for a neutron star mass range of M⩽1.82M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\leqslant 1.82M_\odot $$\end{document} (ΔI/I⩾1.4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 1.4\%$$\end{document}), and M⩽1.16M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\leqslant 1.16M_\odot $$\end{document} (ΔI/I⩾7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 7\%$$\end{document}). We also investigate the influence of nuclear matter bulk parameters on crustal properties and find that symmetry energy is the quantity that produces the higher variations on Mcrust\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\mathrm{crust}$$\end{document}, Rcrust\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{crust}$$\end{document}, and ΔI/I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I$$\end{document}. Based on the results, we construct a particular RMF parametrization able to satisfy ΔI/I⩾7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 7\%$$\end{document} even at M=1.4M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=1.4M_\odot $$\end{document}, the mass value used to fit data from the softer component of the Vela pulsar X-ray spectrum. The model also presents compatibility with observational data from PSR J1614−2230, PSR J0348 + 0432, and MSP J0740 + 6620 pulsars, as well as, with data from the Neutron Star Interior Composition Explorer (NICER) mission.
引用
收藏
相关论文
共 50 条
  • [31] The hyperon neutron star mean-field model
    Bednarek, I.
    Manka, R.
    EPL, 2007, 78 (03)
  • [32] MEAN-FIELD CALCULATIONS OF BULK PROPERTIES IN NEUTRON-RICH NUCLEI
    DEBLASIO, FV
    LAZZARI, G
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1994, 107 (09): : 1579 - 1585
  • [33] Neutron radii in mean-field models
    Furnstahl, RJ
    NUCLEAR PHYSICS A, 2002, 706 (1-2) : 85 - 110
  • [34] Relativistic mean-field theories for neutron-star physics based on chiral effective field theory
    Alford, M. G.
    Brodie, L.
    Haber, A.
    Tews, I.
    PHYSICAL REVIEW C, 2022, 106 (05)
  • [35] Parameter counting in relativistic mean-field models
    Furnstahl, RJ
    Serot, BD
    NUCLEAR PHYSICS A, 2000, 671 (1-4) : 447 - 460
  • [36] Properties of nuclei in the inner crusts of neutron stars in the relativistic mean-field theory
    Cheng, KS
    Yao, CC
    Dai, ZG
    PHYSICAL REVIEW C, 1997, 55 (04): : 2092 - 2100
  • [37] Dynamical Instabilities in Relativistic Mean-Field Models and Inner Edge of the Compact Star Crust
    Santos, Alexandre
    Brito, Lucilia
    Providencia, Constanca
    LA RABIDA 2009: INTERNATIONAL SCIENTIFIC MEETING ON NUCLEAR PHYSICS: BASIC CONCEPTS IN NUCLEAR PHYSICS: THEORY, EXPERIMENTS, AND APPLICATIONS, 2010, 1231 : 189 - 190
  • [38] Massive neutron star with strangeness in a relativistic mean-field model with a high-density cutoff
    Zhang, Ying
    Hu, Jinniu
    Liu, Peng
    PHYSICAL REVIEW C, 2018, 97 (01)
  • [39] Naturalness of nonlinear σ, ω self-couplings in relativistic mean-field models for neutron stars
    Lütz, EF
    Rocha, SS
    Taurines, AR
    Marranghello, GF
    Dillig, M
    Vasconcellos, CAZ
    EUROPEAN PHYSICAL JOURNAL A, 2003, 18 (2-3): : 483 - 485
  • [40] Constraining equations of state for massive neutron star within relativistic mean field models
    Kumar, Raj
    Sharma, Anuj
    Kumar, Mukul
    Kumar, Sunil
    Thakur, Virender
    Dhiman, Shashi K.
    EUROPEAN PHYSICAL JOURNAL A, 2024, 60 (01):