The charge density distribution and antiferromagnetic properties of azurite Cu3[CO3]2(OH)2

被引:0
|
作者
E. L. Belokoneva
Yu. K. Gubina
J. B. Forsyth
机构
[1] Moscow State University,
[2] Geological Faculty,undefined
[3] Department Crystallography,undefined
[4] Vorobjevi Gory Moscow,undefined
[5] 119899 Russia Tel.: +7 (095) 939-4926; Fax: +7 (095) 932-8889 e-mail: elbel@geol.msu.ru,undefined
[6] Clarendon Laboratory,undefined
[7] Oxford University,undefined
[8] Parks Road,undefined
[9] Oxford OXI 3PV UK,undefined
来源
关键词
Key words Azurite; Experimental charge density; Orbital occupation; Antiferromagnetic properties;
D O I
暂无
中图分类号
学科分类号
摘要
 The structure and bonding in azurite are investigated on the basis of accurate single-crystal X-ray diffraction data. Both spherical IAM and pseudoatom models have been used in the refinements. The deformation electron density: dynamic (IAM) and static (pseudoatom) are mapped for the CO3 group and for Cu(1) and Cu(2) squares in different sections. The carbonate group in azurite, not constrained to have trigonal symmetry, exhibits peaks in both static and dynamic maps which result from σ-bonds between C–sp2 hybrid orbitals and O–p orbitals with some delocalisation of density in the dynamic map because of the thermal motion of oxygens. For the analysis of crystal fields and for the multipole calculations, coordinate systems on the Cu-atoms have been chosen as for a Jahn-Teller octahedron, but with the normal to the square as the z-axis instead of the absent apical oxygens. In both Cu squares there are peaks which result from single Cu–O σ-bonds. Most remarkable is the preferential occupation of the non-bonding 3d orbitals of Cu-atoms being above and below the Cu-squares. The centre of these peaks for the Cu(1)-atom makes an angle with the c-axis ∼53° in the ac plane. This direction corresponds to the maximum magnetic susceptibility at ambient temperature. The real atomic charges of Cu-atoms in azurite determined from multipoles are close to Cu+1. The occupancies of the 3d atomic orbitals show that non-bonding orbitals in both Cu-atoms are most populated, in contrast to bonding orbitals, as is typical for the Jahn-Teller octahedron. The absence of apical oxygens makes this effect even more pronounced. It is suggested that the antiferromagnetic structure below 1.4 K will be collinear and commensurate with b′=2b.
引用
收藏
页码:498 / 507
页数:9
相关论文
共 50 条
  • [31] Tuning of magnetic frustration in S=1/2 Kagome lattices {[Cu3(CO3)2(bPe)3](CLO4)2}n and {[Cu3(CO3)2(bPY)3](CLO4)2}n through rigid and flexible ligands
    Ajeesh, M. O.
    Yogi, A.
    Padmanabhan, M.
    Nath, R.
    SOLID STATE COMMUNICATIONS, 2015, 207 : 16 - 20
  • [32] Strongly canted antiferromagnetic ground state in Cu3(OH)2F4
    Danilovich, Igor L.
    Merkulova, Anna, V
    Morozov, Igor, V
    Ovchenkov, Evgeniy A.
    Spiridonov, Felix M.
    Zvereva, Elena A.
    Volkova, Olga S.
    Mazurenko, Vladimir V.
    Pchelkina, Zlata, V
    Tsirlin, Alexander A.
    Balz, Christian
    Holenstein, Stefan
    Luetkens, Hubertus
    Shakin, Alexander A.
    Vasiliev, Alexander N.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 776 : 16 - 21
  • [33] Experimental observation of the 1/3 magnetization plateau in the diamond-chain compound Cu3(CO3)2(OH)2 -: art. no. 227201
    Kikuchi, H
    Fujii, Y
    Chiba, M
    Mitsudo, S
    Idehara, T
    Tonegawa, T
    Okamoto, K
    Sakai, T
    Kuwai, T
    Ohta, H
    PHYSICAL REVIEW LETTERS, 2005, 94 (22)
  • [34] MINERAL FORMATION FROM AQUEOUS-SOLUTION .3. THE STABILITY OF AURICHALCITE, (ZN,CU)5(CO3)2(OH)6, AND ROSASITE (CU,ZN)2(CO3)(OH)2
    ALWAN, AK
    THOMAS, JH
    WILLIAMS, PA
    TRANSITION METAL CHEMISTRY, 1980, 5 (01) : 3 - 5
  • [35] DIE KRISTALLSTRUKTUR VON AZURIT, CU-3(OH)2 (CO3)2.
    ZEMANN, J
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1958, 70 (20) : 630 - 630
  • [36] Bilayered NiZn(CO3)(OH)2-Ni2(CO3)(OH)2 nanocomposites as positive electrode for supercapacitors
    Lee, Damin
    Mathur, Sanjay
    Kim, Kwang Ho
    NANO ENERGY, 2021, 86
  • [37] High field ESR study of the S=1/2 diamond-chain substance Cu3(CO3)2(OH)2 up to the magnetization plateau region
    Ohta, H
    Okubo, S
    Kamikawa, T
    Kunimoto, T
    Inagaki, Y
    Kikuchi, H
    Saito, T
    Azuma, M
    Takano, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (10) : 2464 - 2467
  • [38] Thermodynamic properties of a spin-1/2 diamond chain as a model for a molecule-based ferrimagnet and the compound Cu3(CO3)2(OH)2 (vol 73, art no 104454, 2006)
    Fu, H. H.
    Yao, K. L.
    Liu, Z. L.
    PHYSICAL REVIEW B, 2008, 77 (21):
  • [39] Basic carbonates of dysprosium:: Dy2O2(CO3) and Dy(OH)(CO3)
    Kutlu, I
    Meyer, G
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1999, 625 (03): : 402 - 406
  • [40] Charge Density Study of Cu3(en)2(CN)4.H2O
    Fronc, Marek
    Kozisek, Jozef
    Fuess, Hartmut
    Paulmann, Carsten
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C430 - C430