Almost periodic matrix;
Reducibility;
KAM iteration;
Linear Hamiltonian systems;
37C10;
70H08;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we study the reducibility problem for a class of analytic almost periodic linear Hamiltonian systems dxdt=J[A+εQ(t)]x\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \frac{dx}{dt} = J[{A}+\varepsilon {Q}(t)]x \end{aligned}$$\end{document}where A is a symmetric matrix, J is an anti-symmetric symplectic matrix, Q(t) is an analytic almost periodic symmetric matrix with respect to t, and ε\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon $$\end{document} is a sufficiently small parameter. It is also assumed that JA has possible multiple eigenvalues and the basic frequencies of Q satisfy the non-resonance conditions. It is shown that, under some non-resonant conditions, some non-degeneracy conditions and for most sufficiently small ε\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon $$\end{document} , the Hamiltonian system can be reduced to a constant coefficients Hamiltonian system by means of an almost periodic symplectic change of variables with the same basic frequencies as Q(t).