On the Reducibility of a Class of Linear Almost Periodic Hamiltonian Systems

被引:0
|
作者
Muhammad Afzal
Shuzheng Guo
Daxiong Piao
机构
[1] Ocean University of China,School of Mathematical Sciences
关键词
Almost periodic matrix; Reducibility; KAM iteration; Linear Hamiltonian systems; 37C10; 70H08;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the reducibility problem for a class of analytic almost periodic linear Hamiltonian systems dxdt=J[A+εQ(t)]x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{dx}{dt} = J[{A}+\varepsilon {Q}(t)]x \end{aligned}$$\end{document}where A is a symmetric matrix, J is an anti-symmetric symplectic matrix, Q(t) is an analytic almost periodic symmetric matrix with respect to t, and ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} is a sufficiently small parameter. It is also assumed that JA has possible multiple eigenvalues and the basic frequencies of Q satisfy the non-resonance conditions. It is shown that, under some non-resonant conditions, some non-degeneracy conditions and for most sufficiently small ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} , the Hamiltonian system can be reduced to a constant coefficients Hamiltonian system by means of an almost periodic symplectic change of variables with the same basic frequencies as Q(t).
引用
收藏
页码:723 / 738
页数:15
相关论文
共 50 条
  • [1] On the Reducibility of a Class of Linear Almost Periodic Hamiltonian Systems
    Afzal, Muhammad
    Guo, Shuzheng
    Piao, Daxiong
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (02) : 723 - 738
  • [2] ON THE REDUCIBILITY OF A CLASS OF ALMOST PERIODIC HAMILTONIAN SYSTEMS
    Li, Jia
    Xu, Junxiang
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (07): : 3905 - 3919
  • [3] Onthe Reducibility of a Class Nonlinear Almost Periodic Hamiltonian Systems
    Xue, Nina
    Sun, Yanmei
    [J]. SYMMETRY-BASEL, 2024, 16 (06):
  • [4] Reducibility for a class of almost periodic Hamiltonian systems which are degenerate
    Li, Jia
    Li, Xia
    Zhu, Chunpeng
    [J]. AIMS MATHEMATICS, 2023, 8 (01): : 2296 - 2307
  • [5] Effective Reducibility for a Class of Linear Almost Periodic Systems
    Jia Li
    [J]. Mathematical Notes, 2023, 114 : 1314 - 1321
  • [6] Effective Reducibility for a Class of Linear Almost Periodic Systems
    Li, Jia
    [J]. MATHEMATICAL NOTES, 2023, 114 (5-6) : 1314 - 1321
  • [7] On the reducibility of a class of almost-periodic linear Hamiltonian systems and its application in Schrodinger equation
    Afzal, Muhammad
    Ismaeel, Tariq
    Butt, Azhar Iqbal Kashif
    Farooq, Zahid
    Ahmad, Riaz
    Khan, Ilyas
    [J]. AIMS MATHEMATICS, 2023, 8 (03): : 7471 - 7489
  • [8] On the Reducibility of a Class of Linear Almost Periodic Differential Equations
    Afzal Muhammad
    Guo Shu-zheng
    [J]. Communications in Mathematical Research, 2019, 35 (01) : 1 - 9
  • [9] On the Effective Reducibility of a Class of Quasi-Periodic Hamiltonian Systems
    Li, Jia
    Xu, Junxiang
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2015, 14 (02) : 281 - 290
  • [10] On the Reducibility of a Class of Nonlinear Periodic Hamiltonian Systems with Degenerate Equilibrium
    Jia Li
    [J]. Qualitative Theory of Dynamical Systems, 2020, 19