UVaFTLE: Lagrangian finite time Lyapunov exponent extraction for fluid dynamic applications

被引:0
|
作者
Rocío Carratalá-Sáez
Yuri Torres
José Sierra-Pallares
Sergio López-Huguet
Diego R. Llanos
机构
[1] Universidad de Valladolid,Depto. Informática
[2] Universidad de Valladolid,Depto. Ingeniería Energética y Fluidomecánica
[3] Universitat Politècnica de València,Instituto de Instrumentación para Imagen Molecular (I3M)
来源
关键词
Finite time Lyapunov exponent; Lagrangian coherent structures; OpenMP; GPU; Multithreading; Multi-GPU;
D O I
暂无
中图分类号
学科分类号
摘要
The determination of Lagrangian Coherent Structures (LCS) is becoming very important in several disciplines, including cardiovascular engineering, aerodynamics, and geophysical fluid dynamics. From the computational point of view, the extraction of LCS consists of two main steps: The flowmap computation and the resolution of Finite Time Lyapunov Exponents (FTLE). In this work, we focus on the design, implementation, and parallelization of the FTLE resolution. We offer an in-depth analysis of this procedure, as well as an open source C implementation (UVaFTLE) parallelized using OpenMP directives to attain a fair parallel efficiency in shared-memory environments. We have also implemented CUDA kernels that allow UVaFTLE to leverage as many NVIDIA GPU devices as desired in order to reach the best parallel efficiency. For the sake of reproducibility and in order to contribute to open science, our code is publicly available through GitHub. Moreover, we also provide Docker containers to ease its usage.
引用
收藏
页码:9635 / 9665
页数:30
相关论文
共 50 条
  • [21] Localized Finite-time Lyapunov Exponent for unsteady flow analysis
    Zuse Institute Berlin, Germany
    不详
    VMV 2009 - Proc. Vision, Model., Vis. Workshop 2009, (265-274):
  • [22] Lagrangian Reduced Order Modeling Using Finite Time Lyapunov Exponents
    Xie, Xuping
    Nolan, Peter J.
    Ross, Shane D.
    Mou, Changhong
    Iliescu, Traian
    FLUIDS, 2020, 5 (04)
  • [23] Neural Monte Carlo rendering of finite-time Lyapunov exponent fields
    Yang Xi
    Wanna Luan
    Jun Tao
    Visual Intelligence, 1 (1):
  • [24] Fast computation of finite-time Lyapunov exponent fields for unsteady flows
    Brunton, Steven L.
    Rowley, Clarence W.
    CHAOS, 2010, 20 (01)
  • [25] Refining finite-time Lyapunov exponent ridges and the challenges of classifying them
    Allshouse, Michael R.
    Peacock, Thomas
    CHAOS, 2015, 25 (08)
  • [26] Finite-time Lyapunov exponent-based analysis for compressible flows
    Gonzalez, D. R.
    Speth, R. L.
    Gaitonde, D. V.
    Lewis, M. J.
    CHAOS, 2016, 26 (08)
  • [27] MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields
    Guenther, Tobias
    Kuhn, Alexander
    Theisel, Holger
    COMPUTER GRAPHICS FORUM, 2016, 35 (03) : 381 - 390
  • [28] ANALYSIS AND MODELING OF AN EXPERIMENTAL DEVICE BY FINITE-TIME LYAPUNOV EXPONENT METHOD
    Santitissadeekorn, N.
    Bohl, D.
    Bollt, E. M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (03): : 993 - 1006
  • [29] Finite Time Lyapunov Exponent Analysis of Model Predictive Control and Reinforcement Learning
    Krishna, Kartik
    Brunton, Steven L.
    Song, Zhuoyuan
    IEEE ACCESS, 2023, 11 : 118916 - 118930
  • [30] The backward phase flow method for the Eulerian finite time Lyapunov exponent computations
    Leung, Shingyu
    CHAOS, 2013, 23 (04)