UVaFTLE: Lagrangian finite time Lyapunov exponent extraction for fluid dynamic applications

被引:0
|
作者
Rocío Carratalá-Sáez
Yuri Torres
José Sierra-Pallares
Sergio López-Huguet
Diego R. Llanos
机构
[1] Universidad de Valladolid,Depto. Informática
[2] Universidad de Valladolid,Depto. Ingeniería Energética y Fluidomecánica
[3] Universitat Politècnica de València,Instituto de Instrumentación para Imagen Molecular (I3M)
来源
关键词
Finite time Lyapunov exponent; Lagrangian coherent structures; OpenMP; GPU; Multithreading; Multi-GPU;
D O I
暂无
中图分类号
学科分类号
摘要
The determination of Lagrangian Coherent Structures (LCS) is becoming very important in several disciplines, including cardiovascular engineering, aerodynamics, and geophysical fluid dynamics. From the computational point of view, the extraction of LCS consists of two main steps: The flowmap computation and the resolution of Finite Time Lyapunov Exponents (FTLE). In this work, we focus on the design, implementation, and parallelization of the FTLE resolution. We offer an in-depth analysis of this procedure, as well as an open source C implementation (UVaFTLE) parallelized using OpenMP directives to attain a fair parallel efficiency in shared-memory environments. We have also implemented CUDA kernels that allow UVaFTLE to leverage as many NVIDIA GPU devices as desired in order to reach the best parallel efficiency. For the sake of reproducibility and in order to contribute to open science, our code is publicly available through GitHub. Moreover, we also provide Docker containers to ease its usage.
引用
收藏
页码:9635 / 9665
页数:30
相关论文
共 50 条
  • [1] UVaFTLE: Lagrangian finite time Lyapunov exponent extraction for fluid dynamic applications
    Carratala-Saez, Rocio
    Torres, Yuri
    Sierra-Pallares, Jose
    Lopez-Huguet, Sergio
    Llanos, Diego R.
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (09): : 9635 - 9665
  • [2] Estimating the Finite Time Lyapunov Exponent from Sparse Lagrangian Trajectories
    Ng, Yu-Keung
    Leung, Shingyu
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (04) : 1143 - 1177
  • [3] Lagrangian coherent structures and the smallest finite-time Lyapunov exponent
    Haller, George
    Sapsis, Themistoklis
    CHAOS, 2011, 21 (02)
  • [4] Applications of Finite-Time Lyapunov Exponent in detecting Lagrangian Coherent Structures for coastal ocean processes: a review
    Peng, Yue
    Xu, Xin
    Shao, Qi
    Weng, Haiyong
    Niu, Haibo
    Li, Zhiyu
    Zhang, Chen
    Li, Pu
    Zhong, Xiaomei
    Yang, Jie
    FRONTIERS IN MARINE SCIENCE, 2024, 11
  • [5] Finite size Lyapunov exponent: review on applications
    Cencini, Massimo
    Vulpiani, Angelo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (25)
  • [6] UNCERTAINTY IN FINITE-TIME LYAPUNOV EXPONENT COMPUTATIONS
    Balasuriya, Sanjeeva
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2020, 7 (02): : 313 - 337
  • [7] Visual Analysis of the Finite-Time Lyapunov Exponent
    Sagrista, Antoni
    Jordan, Stefan
    Sadlo, Filip
    COMPUTER GRAPHICS FORUM, 2020, 39 (03) : 331 - 342
  • [8] An Improved Eulerian Approach for the Finite Time Lyapunov Exponent
    You, Guoqiao
    Leung, Shingyu
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (03) : 1407 - 1435
  • [9] Nonlinear finite-time Lyapunov exponent and predictability
    Ding, Ruiqiang
    Li, Jianping
    PHYSICS LETTERS A, 2007, 364 (05) : 396 - 400
  • [10] An Eulerian approach for computing the finite time Lyapunov exponent
    Leung, Shingyu
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (09) : 3500 - 3524