A parallel computing-based Deep Attention model for named entity recognition

被引:0
|
作者
Xiaojun Liu
Ning Yang
Yu Jiang
Lichuan Gu
Xianzhang Shi
机构
[1] Anhui Agricultural University,School of Computer and Information
来源
关键词
BiLSTM; NER; Attention mechanism; Parallel computing;
D O I
暂无
中图分类号
学科分类号
摘要
Named entity recognition (NER) is an important task in natural language processing and has been widely studied. In recent years, end-to-end NER with bidirectional long short-term memory (BiLSTM) has received more and more attention. However, it remains a major challenge for BiLSTM to parallel computing, long-range dependencies and single feature space mapping. We propose a deep neural network model which is based on parallel computing self-attention mechanism to address these problems. We only use a small number of BiLSTMs to capture the time series of texts and then make use of self-attention mechanism that allows parallel computing to capture long-range dependencies. Experiments on two NER datasets show that our model is superior in quality and takes less training time. Our model achieves an F1 score of 92.63% on the SIGHAN bakeoff 2006 MSRA portion for Chinese NER, improving over the existing best results by over 1.4%. On the CoNLL2003 shared task portion for English NER, our model achieves an F1 score of 92.17%, which outperforms the previous state-of-the-art results by 0.91%.
引用
收藏
页码:814 / 830
页数:16
相关论文
共 50 条
  • [31] Integrated Model for Morphological Analysis and Named Entity Recognition Based on Label Attention Networks in Korean
    Kim, Hongjin
    Kim, Harksoo
    APPLIED SCIENCES-BASEL, 2020, 10 (11):
  • [32] An Attention-Based BiLSTM-CRF Model for Chinese Clinic Named Entity Recognition
    Wu, Guohua
    Tang, Guangen
    Wang, Zhongru
    Zhang, Zhen
    Wang, Zhen
    IEEE ACCESS, 2019, 7 (113942-113949) : 113942 - 113949
  • [33] An Attention-Based Approach for Mongolian News Named Entity Recognition
    Tan, Mingyan
    Bao, Feilong
    Gao, Guanglai
    Wang, Weihua
    CHINESE COMPUTATIONAL LINGUISTICS, CCL 2019, 2019, 11856 : 424 - 435
  • [34] Based on Stacked Attention Network for Chinese Medical Named Entity Recognition
    Gu, Tao (GUTAObjut@outlook.com), 1600, Institute of Electrical and Electronics Engineers Inc.
  • [35] An Attention Based Bi-LSTM DenseNet Model for Named Entity Recognition in English Texts
    B. VeeraSekharReddy
    Koppula Srinivas Rao
    Neerja Koppula
    Wireless Personal Communications, 2023, 130 : 1435 - 1448
  • [36] Named Entity Recognition of Chinese Agricultural Text Based on Attention Mechanism
    Zhao, Pengfei
    Zhao, Chunjiang
    Wu, Huarui
    Wang, Wei
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (01): : 185 - 192
  • [37] An Attention Based Bi-LSTM DenseNet Model for Named Entity Recognition in English Texts
    VeeraSekharReddy, B.
    Rao, Koppula Srinivas
    Koppula, Neerja
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 130 (02) : 1435 - 1448
  • [38] Chinese named entity recognition model based on BERT
    Liu, Hongshuai
    Jun, Ge
    Zheng, Yuanyuan
    2020 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE COMMUNICATION AND NETWORK SECURITY (CSCNS2020), 2021, 336
  • [39] Based on stacked attention network for Chinese medical named entity recognition
    Gu, Tao
    Zhu, ZhiChao
    Zhao, Qing
    2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024, 2024, : 2032 - 2037
  • [40] A Self-Attention-Based Approach for Named Entity Recognition in Cybersecurity
    Li, Tao
    Guo, Yuanbo
    Ju, Ankang
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 147 - 150