Two-sided hardy-type inequalities for monotone functions

被引:0
|
作者
V. D. Stepanov
L. E. Persson
O. V. Popova
机构
[1] Peoples’ Friendship University of Russia,Department of Mathematics
[2] Lulea University of Technology,undefined
来源
Doklady Mathematics | 2009年 / 80卷
关键词
Monotone Function; Borel Measure; DOKLADY Mathematic; Hardy Inequality; Steklov Inst;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:814 / 817
页数:3
相关论文
共 50 条
  • [41] A new approach to Hardy-type inequalities
    Osekowski, Adam
    ARCHIV DER MATHEMATIK, 2015, 104 (02) : 165 - 176
  • [42] On a scale of Hardy-type integral inequalities
    Dubinskii, Yu. A.
    DOKLADY MATHEMATICS, 2010, 81 (01) : 111 - 114
  • [43] On a new class of Hardy-type inequalities
    EO Adeleke
    A Čižmešija
    JA Oguntuase
    L-E Persson
    D Pokaz
    Journal of Inequalities and Applications, 2012
  • [44] New Hardy-type integral inequalities
    Manna, Atanu
    ACTA SCIENTIARUM MATHEMATICARUM, 2020, 86 (3-4): : 467 - 491
  • [45] The Optimal Constant in Hardy-type Inequalities
    Mu-Fa CHEN
    Acta Mathematica Sinica, 2015, 31 (05) : 731 - 754
  • [46] Equivalent Properties of Two Kinds of Hardy-Type Integral Inequalities
    Rassias, Michael Th
    Yang, Bicheng
    Raigorodskii, Andrei
    SYMMETRY-BASEL, 2021, 13 (06):
  • [48] On weighted iterated Hardy-type inequalities
    Rza Mustafayev
    Positivity, 2018, 22 : 275 - 299
  • [49] A new approach to Hardy-type inequalities
    Adam Osȩkowski
    Archiv der Mathematik, 2015, 104 : 165 - 176
  • [50] On a scale of Hardy-type integral inequalities
    Yu. A. Dubinskii
    Doklady Mathematics, 2010, 81 : 111 - 114