Ladder Invariants and Coherent States for Time-Dependent Non-Hermitian Hamiltonians

被引:0
|
作者
M. Zenad
F. Z. Ighezou
O. Cherbal
M. Maamache
机构
[1] USTHB,Faculty of Physics, Theoretical Physics Laboratory
[2] Université Ferhat Abbas Sétif 1,Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences
来源
International Journal of Theoretical Physics | 2020年 / 59卷
关键词
Coherent states; Invariant theory; Non-Hermitian Hamiltonians; Grassmann variables;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the Dodonov–Malkin–Man’ko–Trifonov (DMMT) invariant method (Malkin et al. Phys. Rev. D 2, 1371 1, J. Math. Phys. 14, 576 2; Dodonov et al. Int. J. Theor. Phys. 14, 37 3; Dodonov and Man’ko Phys. Rev. A 20, 550 4) to time-dependent pseudo-fermionic systems by introducing ladder invariant operators (time-dependent integrals of motion) which play the role of time-dependent pseudo-fermionic operators and constructing time-dependent pseudo-fermionic coherent states (PFCS) for such systems. As illustrative example, we study in details the time-dependent parity-time-symmetric two-level system under synchronous combined modulations. We explicitly determine time-dependent pseudo-fermionic operators and construct time-dependent PFCS for this physical system. We show that our approach can be extended to time-dependent pseudo-bosonic systems.
引用
收藏
页码:1214 / 1226
页数:12
相关论文
共 50 条
  • [21] TIME-DEPENDENT INVARIANTS AND GENERALIZED COHERENT STATES
    GERRY, CC
    PHYSICS LETTERS A, 1985, 109 (04) : 149 - 151
  • [22] Non-Hermitian Hamiltonians and stability of pure states
    Zloshchastiev, Konstantin G.
    EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (11):
  • [23] Non-Hermitian Hamiltonians and stability of pure states
    Konstantin G. Zloshchastiev
    The European Physical Journal D, 2015, 69
  • [24] Time-dependent C-operators as Lewis-Riesenfeld invariants in non-Hermitian theories
    Fring, Andreas
    Taira, Takano
    Tenney, Rebecca
    PHYSICS LETTERS A, 2022, 452
  • [25] Non-Hermitian Swanson model with a time-dependent metric
    Fring, Andreas
    Moussa, Miled H. Y.
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [26] Equivalent Hermitian Hamiltonians for some non-Hermitian Hamiltonians
    Nanayakkara, Asiri
    Mathanaranjan, Thilagarajah
    PHYSICAL REVIEW A, 2012, 86 (02):
  • [27] Interactions of Hermitian and non-Hermitian Hamiltonians
    Bender, Carl M.
    Jones, Hugh F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (24)
  • [28] Beyond PT-symmetry: Towards a symmetry-metric relation for time-dependent non-Hermitian Hamiltonians
    Alves da Silva, Luis F.
    Dourado, Rodrigo
    Moussa, Miled
    SCIPOST PHYSICS CORE, 2022, 5 (01):
  • [29] Gauging non-Hermitian Hamiltonians
    Jones, H. F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (13)
  • [30] Adiabatic theorem for non-Hermitian time-dependent open systems
    Fleischer, A
    Moiseyev, N
    PHYSICAL REVIEW A, 2005, 72 (03):