The Fermi–Walker Derivative on the Spherical Indicatrix of Timelike Curve in Minkowski 3-Space

被引:0
|
作者
Fatma Karakuş
Yusuf Yaylı
机构
[1] Sinop University,Department of Mathematics Faculty of Arts and Sciences
[2] Ankara University,Department of Mathematics Faculty of Science
来源
关键词
Primary 53B20; 53B21; 53B50; Secondary 53Z05; 53Z99; Fermi–Walker derivative; Fermi–Walker parallelism; Non-rotating frame; Tangent indicatrix; Principal Normal indicatrix; Binormal indicatrix; Helix; Slant Helix;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper Fermi–Walker derivative and Fermi–Walker parallelism and non-rotating frame concepts are given along the spherical indicatrix of a timelike curve in E13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_{1}^{3}}$$\end{document}. First, we consider a timelike curve in the Minkowski space and investigate the Fermi–Walker derivative along the tangent. The concepts which Fermi–Walker derivative are analyzed along its tangent. Then, the Fermi–Walker derivative and its theorems are analyzed along the principal normal indicatrix and the binormal indicatrix of timelike curve in E13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_{1}^{3}}$$\end{document}.
引用
收藏
页码:199 / 215
页数:16
相关论文
共 50 条
  • [21] SURFACE FAMILY WITH A COMMON NATURAL GEODESIC LIFT OF A TIMELIKE CURVE IN MINKOWSKI 3-SPACE
    Ergun, Evren
    Bayram, Ergin
    Kasap, Emin
    JOURNAL OF SCIENCE AND ARTS, 2019, (02): : 265 - 274
  • [22] On Timelike Rectifying Slant Helices in Minkowski 3-Space
    Altunkaya, Bulent
    Kula, Levent
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2018, 11 (01): : 17 - 25
  • [23] Timelike Circular Surfaces and Singularities in Minkowski 3-Space
    Li, Yanlin
    Mofarreh, Fatemah
    Abdel-Baky, Rashad A.
    SYMMETRY-BASEL, 2022, 14 (09):
  • [24] Characterizations of timelike slant helices in Minkowski 3-space
    Gok, Ismail
    Nurkan, Semra Kaya
    Ilarslan, Kazim
    Kula, Levent
    Altinok, Mesut
    MATHEMATICAL COMMUNICATIONS, 2014, 19 (01) : 119 - 138
  • [25] A study on timelike circular surfaces in Minkowski 3-space
    Abdel-Baky, Rashad A.
    Alluhaibi, Nadia
    Ali, Akram
    Mofarreh, Fatemah
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (06)
  • [26] Singularities for Timelike Developable Surfaces in Minkowski 3-Space
    Li, Yanlin
    Chen, Zhizhi
    Nazra, Sahar H. H.
    Abdel-Baky, Rashad A. A.
    SYMMETRY-BASEL, 2023, 15 (02):
  • [27] On the Timelike Circular Surface and Singularities in Minkowski 3-Space
    Almoneef, Areej A.
    Abdel-Baky, Rashad A.
    AXIOMS, 2023, 12 (10)
  • [28] Rotations with unit timelike quaternions in Minkowski 3-space
    Özdemir, M
    Ergin, AA
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (02) : 322 - 336
  • [29] Some Characterizations of Translation Surface Generated by Spherical Indicatrices of Timelike Curves in Minkowski 3-space
    Yadav, Akhilesh
    Yadav, Ajay Kumar
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 48 - 61
  • [30] Timelike clad helices and developable surfaces in Minkowski 3-space
    Seher Kaya
    Osman Ateş
    İsmail Gök
    Yusuf Yayli
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 259 - 273