Maps that preserve the local spectral subspace of generalized product of operators

被引:0
|
作者
Mohammed Bouchangour
Ali Jaatit
机构
[1] Mohammed First University,Department of Mathematics, LIABM Laboratory Faculty of Sciences
[2] Mohammed First University,Multidisciplinary Faculty
来源
Advances in Operator Theory | 2023年 / 8卷
关键词
Non-linear preservers; Local spectral subspace; Rank-one operators; Generalized product; 47A11; 47A15; 47B48; 47B49;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be an infinite-dimensional complex Banach space and B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}(X)$$\end{document} be the algebra of all bounded linear operators on X. Let n be an integer, such that n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, and let (i1,i2,⋯,im)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(i_1,i_2,\dots ,i_m )$$\end{document} be a sequence with terms belong to {1,2,⋯,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ 1,2,\dots ,n\}$$\end{document}, such that at least one of the terms in (i1,i2,⋯,im)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(i_1,i_2,\dots ,i_m )$$\end{document} arises exactly once. The generalized product of n operators T1,T2,⋯,Tn∈B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1,T_2,\dots , T_n \in {\mathscr {B}}(X)$$\end{document} is given by T1∗T2∗⋯∗Tn=Ti1Ti2⋯Tim\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1*T_2*\cdots *T_n = T_{i_1}T_{i_2}\cdots T_{i_m}$$\end{document}. For a fixed λ0∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _0\in {\mathbb {C}}$$\end{document}, we describe maps ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} on B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}(X)$$\end{document} for which F2m-2(X)⊂ψ(B(X))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_{2m-2}(X)\subset \psi ({\mathscr {B}}(X))$$\end{document} and Xψ(T1)∗⋯∗ψ(Tn)({λ0})=XT1∗⋯∗Tn({λ0})for allT1,⋯,Tn∈B(X),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} X_{\psi (T_1)*\cdots * \psi (T_n)}(\{ \lambda _0\})=X_{T_1*\cdots *T_n}(\{ \lambda _0\}) \text { for all }T_1,\dots ,T_n \in {\mathscr {B}}(X), \end{aligned}$$\end{document}where F2m-2(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_{2m-2}(X)$$\end{document} and XT({λ0})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_T(\{ \lambda _0 \})$$\end{document} denote, respectively, the set of all operators of rank at most 2m-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2m-2$$\end{document} and the local spectral subspace of T∈B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\in {\mathscr {B}}(X)$$\end{document} associated with {λ0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\lambda _0\}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Local spectral subspace preservers
    Benbouziane, Hassane
    Ech-Cherif Elkettani, Mustapha
    Herrou, Imane
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (02) : 293 - 303
  • [33] On Wick product of generalized operators
    LUO Shunlong and YAN Jia’an Institute of Applied Mathematics
    ChineseScienceBulletin, 1998, (15) : 1252 - 1256
  • [34] Operators Which Preserve a Positive Definite Inner Product
    Andruchow, Esteban
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2022, 94 (03)
  • [35] Operators Which Preserve a Positive Definite Inner Product
    Esteban Andruchow
    Integral Equations and Operator Theory, 2022, 94
  • [36] On Wick product of generalized operators
    Luo, SL
    Yan, JA
    CHINESE SCIENCE BULLETIN, 1998, 43 (15): : 1252 - 1256
  • [37] A note on local spectral subspace preservers
    Jaatit, Ali
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 4146 - 4156
  • [38] Maps preserving a certain product of operators
    Taghavi, Ali
    Hosseinzadeh, Roja
    Nasrollahi, Efat
    RICERCHE DI MATEMATICA, 2020, 69 (01) : 83 - 94
  • [39] MAPS PRESERVING GENERALIZED PROJECTION OPERATORS
    Benbouziane, Hassane
    Chadli, Kaddour
    EL Kettani, Mustapha ech-cherif
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (03): : 717 - 729
  • [40] Maps preserving a certain product of operators
    Ali Taghavi
    Roja Hosseinzadeh
    Efat Nasrollahi
    Ricerche di Matematica, 2020, 69 : 83 - 94