Maps that preserve the local spectral subspace of generalized product of operators

被引:0
|
作者
Mohammed Bouchangour
Ali Jaatit
机构
[1] Mohammed First University,Department of Mathematics, LIABM Laboratory Faculty of Sciences
[2] Mohammed First University,Multidisciplinary Faculty
来源
关键词
Non-linear preservers; Local spectral subspace; Rank-one operators; Generalized product; 47A11; 47A15; 47B48; 47B49;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be an infinite-dimensional complex Banach space and B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}(X)$$\end{document} be the algebra of all bounded linear operators on X. Let n be an integer, such that n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, and let (i1,i2,⋯,im)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(i_1,i_2,\dots ,i_m )$$\end{document} be a sequence with terms belong to {1,2,⋯,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ 1,2,\dots ,n\}$$\end{document}, such that at least one of the terms in (i1,i2,⋯,im)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(i_1,i_2,\dots ,i_m )$$\end{document} arises exactly once. The generalized product of n operators T1,T2,⋯,Tn∈B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1,T_2,\dots , T_n \in {\mathscr {B}}(X)$$\end{document} is given by T1∗T2∗⋯∗Tn=Ti1Ti2⋯Tim\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1*T_2*\cdots *T_n = T_{i_1}T_{i_2}\cdots T_{i_m}$$\end{document}. For a fixed λ0∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _0\in {\mathbb {C}}$$\end{document}, we describe maps ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} on B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}(X)$$\end{document} for which F2m-2(X)⊂ψ(B(X))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_{2m-2}(X)\subset \psi ({\mathscr {B}}(X))$$\end{document} and Xψ(T1)∗⋯∗ψ(Tn)({λ0})=XT1∗⋯∗Tn({λ0})for allT1,⋯,Tn∈B(X),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} X_{\psi (T_1)*\cdots * \psi (T_n)}(\{ \lambda _0\})=X_{T_1*\cdots *T_n}(\{ \lambda _0\}) \text { for all }T_1,\dots ,T_n \in {\mathscr {B}}(X), \end{aligned}$$\end{document}where F2m-2(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}_{2m-2}(X)$$\end{document} and XT({λ0})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_T(\{ \lambda _0 \})$$\end{document} denote, respectively, the set of all operators of rank at most 2m-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2m-2$$\end{document} and the local spectral subspace of T∈B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\in {\mathscr {B}}(X)$$\end{document} associated with {λ0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\lambda _0\}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Maps that preserve the local spectral subspace of generalized product of operators
    Bouchangour, Mohammed
    Jaatit, Ali
    ADVANCES IN OPERATOR THEORY, 2023, 8 (01)
  • [2] Maps preserving the local spectral subspace of Jordan product of operators
    Elhodaibi, Mhamed
    Saber, Somaya
    FILOMAT, 2024, 38 (13) : 4611 - 4621
  • [3] Maps preserving the local spectral subspace of product or Jordan triple product of operators
    Bouchangour, Mohammed
    Jaatit, Ali
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1289 - 1301
  • [4] Maps preserving the local spectral subspace of product or Jordan triple product of operators
    Mohammed Bouchangour
    Ali Jaatit
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1289 - 1301
  • [5] MAPS PRESERVING THE LOCAL SPECTRAL SUBSPACE OF SKEW-PRODUCT OF OPERATORS
    Bagherinejad, Hamzeh
    Parvinianzadeh, Rohollah
    Kashkooly, Ali iloon
    OPERATORS AND MATRICES, 2024, 18 (04): : 911 - 923
  • [6] Maps preserving the local spectral radius zero of generalized product of operators
    Abdelali, Zine El Abidine
    Achchi, Abdelali
    Marzouki, Rabi
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (10): : 2021 - 2029
  • [7] Maps preserving the inner local spectral radius zero of generalized product of operators
    Abdelali Achchi
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 355 - 362
  • [8] Maps preserving the inner local spectral radius zero of generalized product of operators
    Achchi, Abdelali
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (02) : 355 - 362
  • [9] Maps preserving local spectral subspaces of generalised product of operators
    Benbouziane, H.
    Bouramdane, Y.
    Ech-Cherif El Kettani, M.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 1033 - 1042
  • [10] Maps preserving local spectral subspaces of generalised product of operators
    H. Benbouziane
    Y. Bouramdane
    M. Ech-Chérif El Kettani
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 1033 - 1042