Characterizations of Proportional Hazard and Reversed Hazard Rate Models Based on Symmetric and Asymmetric Kullback-Leibler Divergences

被引:0
|
作者
Ghobad Barmalzan
Narayanaswamy Balakrishnan
Hadi Saboori
机构
[1] University of Zabol,Department of Statistics
[2] McMaster University,Department of Mathematics and Statistics
关键词
Symmetric Kullback-Leibler divergence; Asymmetric Kullback-Leibler divergence; Proportional hazard rate model; Proportional reversed hazard rate model.; Primary 62E10; Secondary 62F30;
D O I
暂无
中图分类号
学科分类号
摘要
Kullback-Leibler divergence (Kℒ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal {K}\mathcal {L})$\end{document} is widely used for selecting the best model from a given set of candidate parametrized probabilistic models as an approximation to the true density function h(·). In this paper, we obtain a necessary and sufficient condition to determine proportional hazard and reversed hazard rate models based on symmetric and asymmetric Kullback-Leibler divergences. Obtained results show that if h belongs to proportional hazard rate (reversed hazard) model, then the Kullback-Leibler divergence between h and baseline density function, f0, is independent of the choice of ξ, the cut point of left (right) truncated distribution.
引用
收藏
页码:26 / 38
页数:12
相关论文
共 50 条
  • [41] Modified proportional hazard rates and proportional reversed hazard rates models via Marshall-Olkin distribution and some stochastic comparisons
    Narayanaswamy Balakrishnan
    Ghobad Barmalzan
    Abedin Haidari
    Journal of the Korean Statistical Society, 2018, 47 : 127 - 138
  • [42] On joint weak reversed hazard rate order under symmetric copulas
    Balakrishnan N.
    Barmalzan G.
    Kosari S.
    Mathematical Methods of Statistics, 2017, 26 (4) : 311 - 318
  • [43] Reconstruction of the past lower record values in a proportional reversed hazard rate model
    Khatib, B.
    Ahmadi, Jafar
    Razmkhah, M.
    STATISTICS, 2014, 48 (02) : 421 - 435
  • [44] Stochastic comparisons in multivariate mixed model of proportional reversed hazard rate with applications
    Li, Xiaohu
    Da, Gaofeng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (04) : 1016 - 1025
  • [45] Reliability properties of bivariate conditional proportional hazard rate models
    Navarro, Jorge
    Maria Sarabia, Jose
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 113 : 116 - 127
  • [46] ONLINE ESTIMATION OF DYNAMIC SHOCK-ERROR MODELS BASED ON THE KULLBACK-LEIBLER INFORMATION MEASURE
    KRISHNAMURTHY, V
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (05) : 1129 - 1135
  • [47] Multimodal process monitoring based on variational Bayesian PCA and Kullback-Leibler divergence between mixture models
    Cao, Yue
    Jan, Nabil Magbool
    Huang, Biao
    Fang, Mengqi
    Wang, Yalin
    Gui, Weihua
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2021, 210
  • [48] A Minimizing Problem of Distances Between Random Variables with Proportional Reversed Hazard Rate Functions
    Ortega-Jimenez, Patricia
    Pellerey, Franco
    Sordo, Miguel A.
    Suarez-Llorens, Alfonso
    BUILDING BRIDGES BETWEEN SOFT AND STATISTICAL METHODOLOGIES FOR DATA SCIENCE, 2023, 1433 : 311 - 318
  • [49] Two preeminent theoretical models: A proportional hazard rate analysis of recidivism
    Benda, BB
    Toombs, NJ
    JOURNAL OF CRIMINAL JUSTICE, 2002, 30 (03) : 217 - 228
  • [50] Kullback-Leibler Divergence-Based Out-of-Distribution Detection With Flow-Based Generative Models
    Zhang, Yufeng
    Pan, Jialu
    Liu, Wanwei
    Chen, Zhenbang
    Li, Kenli
    Wang, Ji
    Liu, Zhiming
    Wei, Hongmei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1683 - 1697