Characterizations of Proportional Hazard and Reversed Hazard Rate Models Based on Symmetric and Asymmetric Kullback-Leibler Divergences

被引:0
|
作者
Ghobad Barmalzan
Narayanaswamy Balakrishnan
Hadi Saboori
机构
[1] University of Zabol,Department of Statistics
[2] McMaster University,Department of Mathematics and Statistics
关键词
Symmetric Kullback-Leibler divergence; Asymmetric Kullback-Leibler divergence; Proportional hazard rate model; Proportional reversed hazard rate model.; Primary 62E10; Secondary 62F30;
D O I
暂无
中图分类号
学科分类号
摘要
Kullback-Leibler divergence (Kℒ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal {K}\mathcal {L})$\end{document} is widely used for selecting the best model from a given set of candidate parametrized probabilistic models as an approximation to the true density function h(·). In this paper, we obtain a necessary and sufficient condition to determine proportional hazard and reversed hazard rate models based on symmetric and asymmetric Kullback-Leibler divergences. Obtained results show that if h belongs to proportional hazard rate (reversed hazard) model, then the Kullback-Leibler divergence between h and baseline density function, f0, is independent of the choice of ξ, the cut point of left (right) truncated distribution.
引用
收藏
页码:26 / 38
页数:12
相关论文
共 50 条
  • [1] Characterizations of Proportional Hazard and Reversed Hazard Rate Models Based on Symmetric and Asymmetric Kullback-Leibler Divergences
    Barmalzan, Ghobad
    Saboori, Hadi
    Balakrishnan, Narayanaswamy
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2019, 81 (01): : 26 - 38
  • [2] Matrix CFAR detectors based on symmetrized Kullback-Leibler and total Kullback-Leibler divergences
    Hua, Xiaoqiang
    Cheng, Yongqiang
    Wang, Hongqiang
    Qin, Yuliang
    Li, Yubo
    Zhang, Wenpeng
    DIGITAL SIGNAL PROCESSING, 2017, 69 : 106 - 116
  • [3] Dynamic proportional hazard rate and reversed hazard rate models
    Nanda, Asok K.
    Das, Suchismita
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (06) : 2108 - 2119
  • [4] Relative Orderings of Modified Proportional Hazard Rate and Modified Proportional Reversed Hazard Rate Models
    Shrahili, Mansour
    Kayid, Mohamed
    Mesfioui, Mhamed
    MATHEMATICS, 2023, 11 (22)
  • [5] Characterizations of bivariate models using dynamic Kullback-Leibler discrimination measures
    Navarro, J.
    Sunoj, S. M.
    Linu, M. N.
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (11) : 1594 - 1598
  • [6] Proportional reversed hazard and frailty models
    P. G. Sankaran
    V. L. Gleeja
    Metrika, 2008, 68 : 333 - 342
  • [7] Proportional reversed hazard and frailty models
    Sankaran, P. G.
    Gleeja, V. L.
    METRIKA, 2008, 68 (03) : 333 - 342
  • [8] A mixture model of proportional reversed hazard rate
    Li, Xiaohu
    Li, Zhouping
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (18) : 2953 - 2963
  • [9] Bounds on the Kullback-Leibler divergence rate between hidden Markov models
    Vidyasagar, M.
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 2196 - 2201
  • [10] Point Set Registration Method Based on Symmetric Kullback-Leibler Divergence
    Yang Xiaoyan
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (08)