On the distribution of the length of the second row of a Young diagram under Plancherel measure

被引:0
|
作者
J. Baik
P. Deift
K. Johansson
机构
[1] Courant Institute of Mathematics,
[2] NYU,undefined
[3] 251 Mercer Street,undefined
[4] New York,undefined
[5] NY 10012,undefined
[6] USA,undefined
[7] e-mail: biak@cims.nyu.edu,undefined
[8] Courant Institute of Mathematics,undefined
[9] NYU,undefined
[10] 251 Mercer Street,undefined
[11] New York,undefined
[12] NY 10012,undefined
[13] USA,undefined
[14] and Institute of Advanced Study,undefined
[15] Princeton,undefined
[16] NJ 0850,undefined
[17] USA,undefined
[18] e-mail: dieft@cims.nyu.edu,undefined
[19] Department of Mathematics,undefined
[20] Royal Institute of Technology,undefined
[21] S-100 44 Stockholm,undefined
[22] Sweden,undefined
[23] e-mail: kurtj@math.kth.se,undefined
来源
关键词
Probability Distribution; Generate Function; Large Eigenvalue; Young Diagram; Random Permutation;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the probability distribution of the length of the second row of a Young diagram of size N equipped with Plancherel measure. We obtain an expression for the generating function of the distribution in terms of a derivative of an associated Fredholm determinant, which can then be used to show that as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ N \to \infty $\end{document} the distribution converges to the Tracy—Widom distribution [TW1] for the second largest eigenvalue of a random GUE matrix. This paper is a sequel to [BDJ], where we showed that as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ N \to \infty $\end{document} the distribution of the length of the first row of a Young diagram, or equivalently, the length of the longest increasing subsequence of a random permutation, converges to the Tracy—Widom distribution [TW1] for the largest eigenvalue of a random GUE matrix.
引用
收藏
页码:702 / 731
页数:29
相关论文
共 50 条
  • [41] Some thoughts regarding a method to measure the length of femto-second X-ray pulses
    Ziemann, V
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 558 (02): : 584 - 585
  • [42] Competition in tree row agroforestry systems. 1. Distribution and dynamics of fine root length and biomass
    Livesley, SJ
    Gregory, PJ
    Buresh, RJ
    PLANT AND SOIL, 2000, 227 (1-2) : 149 - 161
  • [43] Can the Probability Distribution of Dependency Distance Measure Language Proficiency of Second Language Learners?
    Ouyang, Jinghui
    Jiang, Jingyang
    JOURNAL OF QUANTITATIVE LINGUISTICS, 2018, 25 (04) : 295 - 313
  • [44] The safeguarding of the right measure length under particular consideration of the precision gauge normal.
    Stadthagen, H
    ZEITSCHRIFT DES VEREINES DEUTSCHER INGENIEURE, 1911, 55 : 1525 - 1529
  • [45] Performance assessment of the effective core potentials under the fermionic neural network: First and second row elements
    Wang, Mengsa
    Zhou, Yuzhi
    Wang, Han
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (20):
  • [46] POLYCONDENSATION AND PEPTIDE CHAIN-LENGTH DISTRIBUTION UNDER PREBIOTIC CONDITIONS
    GETZ, WM
    BIOSYSTEMS, 1990, 24 (03) : 177 - 182
  • [47] Traffic Modelling of WiMAX under BMAP with Length of Packet of General Distribution
    Akhter, Jesmin
    Islam, Md. Imdadul
    Amin, M. R.
    2016 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2016, : 78 - 81
  • [48] Determination of diffusion length distribution under variation of the accelerating voltage of the beam
    Ushakov, NG
    Ushakova, AP
    Yakimov, EB
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 1997, 61 (10): : 1992 - 1998
  • [49] Joint radius-length distribution as a measure of anisotropic pore eccentricity: An experimental and analytical framework
    Benjamini, Dan
    Basser, Peter J.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (21):
  • [50] A novel approach to measure slip-length of thin lubricant film under high pressures
    Guo, F.
    Li, X.
    WongP.L.
    Tribology International, 2012, 46