Semi–Fredholm Spectrum and Weyl's Theorem for Operator Matrices

被引:0
|
作者
Xiao Hong Cao
Mao Zheng Guo
Bin Meng
机构
[1] Shanxi Normal University,College of Mathematics and Information Science
[2] Peking University,LMAM, School of Mathematical Sciences
来源
Acta Mathematica Sinica | 2006年 / 22卷
关键词
Semi–Fredholm operator; Fredholm operator; Spectrum; Weyl's theorem; 47A55; 47A53; 47A10;
D O I
暂无
中图分类号
学科分类号
摘要
When A ∈ B(H) and B ∈ B(K) are given, we denote by MC an operator acting on the Hilbert space H ⊕ K of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M_{C} = {\left( {\begin{array}{*{20}c} {A} & {C} \\ {0} & {B} \\ \end{array} } \right)} .$$\end{document}In this paper, first we give the necessary and sufficient condition for MC to be an upper semi-Fredholm (lower semi–Fredholm, or Fredholm) operator for some C ∈ B(K,H). In addition, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma _{{SF_{ + } }} $$\end{document} (A) ={λ ∈ ℂ : A − λI is not an upper semi-Fredholm operator} be the upper semi–Fredholm spectrum of A ∈ B(H) and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma _{{SF_{ - } }} $$\end{document} (A) = {λ ∈ ℂ : A − λI is not a lower semi–Fredholm operator} be the lower semi–Fredholm spectrum of A. We show that the passage from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma _{{SF_{ ±} }} {\left( A \right)} \cap \sigma _{{SF_{ ±} }} {\left( B \right)}\;{\text{to}}\;\sigma_{{SF_{±} }} {\left( {M_{C} } \right)} $$\end{document} is accomplished by removing certain open subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma _{{SF_{ - } }} {\left( A \right)} \cap \sigma_{{SF_{ + } }} {\left( B \right)} $$\end{document} from the former, that is, there is an equality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma_{{SF_{± } }} {\left( A \right)} \cup \sigma _{{SF_{ ±} }} {\left( B \right)} = \sigma_{{SF_{±} }} {\left( {M_{C} } \right)} \cup {\fancyscript G},$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript G}$$\end{document}is the union of certain of the holes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma_{{SF_{± } }} {\left( {M_{C} } \right)} $$\end{document} which happen to be subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma_{{SF_{ - } }} {\left( A \right)} \cap \sigma_{{SF_{ + } }} {\left( B \right)} .$$\end{document}Weyl's theorem and Browder's theorem are liable to fail for 2 × 2 operator matrices. In this paper, we also explore how Weyl's theorem, Browder's theorem, a–Weyl's theorem and a–Browder's theorem survive for 2 × 2 upper triangular operator matrices on the Hilbert space.
引用
收藏
页码:169 / 178
页数:9
相关论文
共 50 条