On the Ricci curvature of nonunimodular solvable metric Lie algebras of small dimension

被引:0
|
作者
Chebarykov M.S. [1 ]
机构
[1] Rubtsovsk Industrial Institute
关键词
homogeneous Riemannian manifold; left-invariant Riemannian metric; Lie algebra; Lie group; the Ricci curvature;
D O I
10.3103/S1055134411020015
中图分类号
学科分类号
摘要
The Ricci curvature of solvable metric Lie algebras is studied. In particular, we prove that the Ricci operator of any metric nonunimodular solvable Lie algebra of dimension not exceeding 6 has at least two negative eigenvalues, that generalizes the known results. © 2011 Allerton Press, Inc.
引用
收藏
页码:81 / 99
页数:18
相关论文
共 50 条
  • [31] RICCI CURVATURE OF LEFT INVARIANT METRICS ON SOLVABLE UNIMODULAR LIE-GROUPS
    MIATELLO, ID
    MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (02) : 257 - 263
  • [32] Ricci flow on three-dimensional, unimodular metric Lie algebras
    Glickenstein, David
    Payne, Tracy L.
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2010, 18 (05) : 927 - 961
  • [33] Non-solvable contractions of semisimple Lie algebras in low dimension
    Campoamor-Stursberg, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (20) : 5355 - 5372
  • [34] Capability of Nilpotent Lie Algebras of Small Dimension
    Shanbehbazari, Fatemeh Pazandeh
    Niroomand, Peyman
    Russo, Francesco G.
    Shamsaki, Afsaneh
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 1153 - 1167
  • [35] Capability of Nilpotent Lie Algebras of Small Dimension
    Fatemeh Pazandeh Shanbehbazari
    Peyman Niroomand
    Francesco G. Russo
    Afsaneh Shamsaki
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 1153 - 1167
  • [36] On the problem of classifying solvable Lie algebras having small codimensional derived algebras
    Le, Vu A.
    Cao, Hai T. T.
    Duong, Hoa Q.
    Nguyen, Tuan A.
    Vo, Thieu N.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (09) : 3775 - 3793
  • [37] Ricci curvature of metric spaces
    Ollivier, Yann
    COMPTES RENDUS MATHEMATIQUE, 2007, 345 (11) : 643 - 646
  • [38] Solvable Lie A-algebras
    Towers, David A.
    JOURNAL OF ALGEBRA, 2011, 340 (01) : 1 - 12
  • [39] Controllability of solvable Lie algebras
    Mittenhuber D.
    Journal of Dynamical and Control Systems, 2000, 6 (3) : 453 - 459
  • [40] SOLVABLE COMPLEMENTED LIE ALGEBRAS
    Towers, David A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (11) : 3823 - 3830