Approximation of functions in the generalized Zygmund class using Hausdorff means

被引:0
|
作者
Mradul Veer Singh
ML Mittal
BE Rhoades
机构
[1] University of Petroleum and Energy Studies,Department of Mathematics
[2] Indian Institute of Technology,Department of Mathematics
[3] Roorkee,Department of Mathematics
[4] Indiana University,undefined
关键词
Zygmund class; degree of approximation; trigonometric Fourier series; Hausdorff means; 42A10; 42A25; 40C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the degree of approximation of a function belonging to the generalized Zygmund class Zp(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z_{p}^{(\omega)}$\end{document} (p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \ge1$\end{document}) by Hausdorff means of its Fourier series. We also deduce a corollary and mention a few applications of our main results.
引用
收藏
相关论文
共 50 条