Deep CockTail NetworksA Universal Framework for Visual Multi-source Domain Adaptation

被引:0
|
作者
Ziliang Chen
Pengxu Wei
Jingyu Zhuang
Guanbin Li
Liang Lin
机构
[1] Sun Yat-sen University,School of Computer Science and Engineering
[2] Carnegie Mellon University,Machine Learning Department
来源
关键词
Multi-source domain adaptation; Cross-domain visual recognition; Domain shift; Category shift; Open-set domain adaptation; Diverse transfer scenarios;
D O I
暂无
中图分类号
学科分类号
摘要
Transferable deep representations for visual domain adaptation (DA) provides a route to learn from labeled source images to recognize target images without the aid of target-domain supervision. Relevant researches increasingly arouse a great amount of interest due to its potential industrial prospect for non-laborious annotation and remarkable generalization. However, DA presumes source images are identically sampled from a single source while Multi-Source DA (MSDA) is ubiquitous in the real-world. In MSDA, the domain shifts exist not only between source and target domains but also among the sources; especially, the multi-source and target domains may disagree on their semantics (e.g., category shifts). This issue challenges the existing solutions for MSDAs. In this paper, we propose Deep CockTail Network (DCTN), a universal and flexibly-deployed framework to address the problems. DCTN uses a multi-way adversarial learning pipeline to minimize the domain discrepancy between the target and each of the multiple in order to learn domain-invariant features. The derived source-specific perplexity scores measure how similar each target feature appears as a feature from one of source domains. The multi-source category classifiers are integrated with the perplexity scores to categorize target images. We accordingly derive a theoretical analysis towards DCTN, including the interpretation why DCTN can be successful without precisely crafting the source-specific hyper-parameters, and target expected loss upper bounds in terms of domain and category shifts. In our experiments, DCTNs have been evaluated on four benchmarks, whose empirical studies involve vanilla and three challenging category-shift transfer problems in MSDA, i.e., source-shift, target-shift and source-target-shift scenarios. The results thoroughly reveal that DCTN significantly boosts classification accuracies in MSDA and performs extraordinarily to resist negative transfers across different MSDA scenarios.
引用
收藏
页码:2328 / 2351
页数:23
相关论文
共 50 条
  • [21] On the analysis of adaptability in multi-source domain adaptation
    Redko, Ievgen
    Habrard, Amaury
    Sebban, Marc
    MACHINE LEARNING, 2019, 108 (8-9) : 1635 - 1652
  • [22] Dynamic Transfer for Multi-Source Domain Adaptation
    Li, Yunsheng
    Yuan, Lu
    Chen, Yinpeng
    Wang, Pei
    Vasconcelos, Nuno
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10993 - 11002
  • [23] Coupled Training for Multi-Source Domain Adaptation
    Amosy, Ohad
    Chechik, Gal
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1071 - 1080
  • [24] Multi-Source Domain Adaptation for Object Detection
    Yao, Xingxu
    Zhao, Sicheng
    Xu, Pengfei
    Yang, Jufeng
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3253 - 3262
  • [25] Multi-Source Domain Adaptation with Sinkhorn Barycenter
    Komatsu, Tatsuya
    Matsui, Tomoko
    Gao, Junbin
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1371 - 1375
  • [26] On the analysis of adaptability in multi-source domain adaptation
    Ievgen Redko
    Amaury Habrard
    Marc Sebban
    Machine Learning, 2019, 108 : 1635 - 1652
  • [27] Graphical Modeling for Multi-Source Domain Adaptation
    Xu, Minghao
    Wang, Hang
    Ni, Bingbing
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1727 - 1741
  • [28] Multi-Source Attention for Unsupervised Domain Adaptation
    Cui, Xia
    Bollegala, Danushka
    1ST CONFERENCE OF THE ASIA-PACIFIC CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 10TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (AACL-IJCNLP 2020), 2020, : 873 - 883
  • [29] Multi-Source Domain Adaptation with Mixture of Experts
    Guo, Jiang
    Shah, Darsh J.
    Barzilay, Regina
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 4694 - 4703
  • [30] Multi-source Domain Adaptation for Face Recognition
    Yi, Haiyang
    Xu, Zhi
    Wen, Yimin
    Fan, Zhigang
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1349 - 1354