Testing the weak equivalence principle and Lorentz invariance with multiwavelength polarization observations of GRB optical afterglows

被引:0
|
作者
Jun-Jie Wei
Xue-Feng Wu
机构
[1] Chinese Academy of Sciences,Purple Mountain Observatory
[2] University of Science and Technology of China,School of Astronomy and Space Sciences
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Violations of both the weak equivalence principle (WEP) and Lorentz invariance can produce vacuum birefringence, which leads to an energy-dependent rotation of the polarization vector of linearly polarized emission from a given astrophysical source. However, the search for the birefringent effect has been hindered by our ignorance concerning the intrinsic polarization angle in different energy bands. Considering the contributions to the observed linear polarization angle from both the intrinsic polarization angle and the rotation angles induced by violations of the WEP and Lorentz invariance, and assuming the intrinsic polarization angle is an unknown constant, we simultaneously obtain robust bounds on possible deviations from the WEP and Lorentz invariance, by directly fitting the multiwavelength polarimetric data of the optical afterglows of gamma-ray burst (GRB) 020813 and GRB 021004. Here, we show that at the 3σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\sigma $$\end{document} confidence level, the difference of the parameterized post-Newtonian parameter γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} values characterizing the departure from the WEP is constrained to be Δγ=-4.5-16.0+10.0×10-24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \gamma =\left( -4.5^{+10.0}_{-16.0}\right) \times 10^{-24}$$\end{document} and the birefringent parameter η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} quantifying the broken degree of Lorentz invariance is limited to be η=6.5-14.0+15.0×10-7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta =\left( 6.5^{+15.0}_{-14.0}\right) \times 10^{-7}$$\end{document}. These are the first simultaneous verifications of the WEP and Lorentz invariance in the photon sector. More stringent limits can be expected as the analysis presented here is applied to future multiwavelength polarization observations in the prompt gamma-ray emission of GRBs.
引用
收藏
相关论文
共 50 条
  • [31] Testing the Weak Equivalence Principle with an antimatter beam at CERN
    Kimura, M.
    Aghion, S.
    Amsler, C.
    Ariga, A.
    Ariga, T.
    Belov, A.
    Bonomi, G.
    Braeuning, P.
    Bremer, J.
    Brusa, R. S.
    Cabaret, L.
    Caccia, M.
    Caravita, R.
    Castelli, F.
    Cerchiari, G.
    Chlouba, K.
    Cialdi, S.
    Comparat, D.
    Consolati, G.
    Demetrio, A.
    Derking, H.
    Di Noto, L.
    Doser, M.
    Dudarev, A.
    Ereditato, A.
    Ferragut, R.
    Fontana, A.
    Gerber, S.
    Giammarchi, M.
    Gligorova, A.
    Gninenko, S.
    Haider, S.
    Holmestad, H.
    Huse, T.
    Jordan, E. J.
    Kawada, J.
    Kellerbauer, A.
    Krasnicky, D.
    Lagomarsino, V.
    Lehner, S.
    Malbrunot, C.
    Mariazzi, S.
    Matveev, V.
    Mazzotta, Z.
    Nebbia, G.
    Nedelec, P.
    Oberthaler, M.
    Pacifico, N.
    Pagano, D.
    Penasa, L.
    [J]. 4TH SYMPOSIUM ON PROSPECTS IN THE PHYSICS OF DISCRETE SYMMETRIES (DISCRETE2014), 2015, 631
  • [32] Constraints on Lorentz Invariance Violation using integral/IBIS observations of GRB041219A
    Laurent, P.
    Goetz, D.
    Binetruy, P.
    Covino, S.
    Fernandez-Soto, A.
    [J]. PHYSICAL REVIEW D, 2011, 83 (12):
  • [33] Enhancing the Effect of Lorentz Invariance and Einstein's Equivalence Principle Violation in Nuclei and Atoms
    Flambaum, V. V.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (07)
  • [34] Closing the neutrinoless double beta decay window into violations of the equivalence principle and/or Lorentz invariance
    Halprin, A
    Volkas, RR
    [J]. PHYSICS LETTERS B, 1999, 459 (1-3) : 183 - 185
  • [35] Testing Einstein's weak equivalence principle with gravitational waves
    Wu, Xue-Feng
    Gao, He
    Wei, Jun-Jie
    Meszaros, Peter
    Zhang, Bing
    Dai, Zi-Gao
    Zhang, Shuang-Nan
    Zhu, Zong-Hong
    [J]. PHYSICAL REVIEW D, 2016, 94 (02)
  • [36] Testing weak equivalence principle with strongly lensed cosmic transients
    H. Yu
    F. Y. Wang
    [J]. The European Physical Journal C, 2018, 78
  • [37] On the possibility of testing the weak equivalence principle with artificial Earth satellites
    Iorio, L
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2004, 36 (02) : 361 - 372
  • [38] A proposal for testing the Weak Equivalence Principle for charged particles in space
    Dittus, H
    Laemmerzahl, C
    [J]. DEVELOPMENTS IN MATHEMATICAL AND EXPERIMENTAL PHYSICS, VOL A: COSMOLOGY AND GRAVITATION, 2002, : 257 - 276
  • [39] Testing weak equivalence principle with strongly lensed cosmic transients
    Yu, H.
    Wang, F. Y.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (09):
  • [40] Testing the weak-equivalence principle near black holes
    Roy, Rittick
    Abdikamalov, Askar B.
    Ayzenberg, Dimitry
    Bambi, Cosimo
    Riaz, Shafqat
    Tripathi, Ashutosh
    [J]. PHYSICAL REVIEW D, 2021, 104 (04)