Testing the weak equivalence principle and Lorentz invariance with multiwavelength polarization observations of GRB optical afterglows

被引:0
|
作者
Jun-Jie Wei
Xue-Feng Wu
机构
[1] Chinese Academy of Sciences,Purple Mountain Observatory
[2] University of Science and Technology of China,School of Astronomy and Space Sciences
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Violations of both the weak equivalence principle (WEP) and Lorentz invariance can produce vacuum birefringence, which leads to an energy-dependent rotation of the polarization vector of linearly polarized emission from a given astrophysical source. However, the search for the birefringent effect has been hindered by our ignorance concerning the intrinsic polarization angle in different energy bands. Considering the contributions to the observed linear polarization angle from both the intrinsic polarization angle and the rotation angles induced by violations of the WEP and Lorentz invariance, and assuming the intrinsic polarization angle is an unknown constant, we simultaneously obtain robust bounds on possible deviations from the WEP and Lorentz invariance, by directly fitting the multiwavelength polarimetric data of the optical afterglows of gamma-ray burst (GRB) 020813 and GRB 021004. Here, we show that at the 3σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\sigma $$\end{document} confidence level, the difference of the parameterized post-Newtonian parameter γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} values characterizing the departure from the WEP is constrained to be Δγ=-4.5-16.0+10.0×10-24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \gamma =\left( -4.5^{+10.0}_{-16.0}\right) \times 10^{-24}$$\end{document} and the birefringent parameter η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} quantifying the broken degree of Lorentz invariance is limited to be η=6.5-14.0+15.0×10-7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta =\left( 6.5^{+15.0}_{-14.0}\right) \times 10^{-7}$$\end{document}. These are the first simultaneous verifications of the WEP and Lorentz invariance in the photon sector. More stringent limits can be expected as the analysis presented here is applied to future multiwavelength polarization observations in the prompt gamma-ray emission of GRBs.
引用
收藏
相关论文
共 50 条
  • [1] Testing the weak equivalence principle and Lorentz invariance with multiwavelength polarization observations of GRB optical afterglows
    Wei, Jun-Jie
    Wu, Xue-Feng
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06):
  • [2] Optical/multiwavelength observations of GRB afterglows
    Galama, TJ
    [J]. GAMMA-RAY BURSTS, 2000, 526 : 303 - 312
  • [3] Prospects for multiwavelength polarization observations of GRB afterglows and the case GRB 030329
    Klose, S
    Palazzi, E
    Masetti, N
    Stecklum, B
    Greiner, J
    Hartmann, DH
    Schmid, HM
    [J]. ASTRONOMY & ASTROPHYSICS, 2004, 420 (03) : 899 - 903
  • [4] Multiwavelength observations of GRB afterglows
    Castro-Tirado, Alberto J.
    [J]. DEATH OF MASSIVE STARS: SUPERNOVAE AND GAMMA-RAY BURSTS, 2012, (279): : 58 - 66
  • [5] Equivalence Principle and the Principle of Local Lorentz Invariance
    W. A. Rodrigues
    M. Sharif
    [J]. Foundations of Physics, 2001, 31 : 1785 - 1806
  • [6] Equivalence Principle and the Principle of Local Lorentz Invariance
    Rodrigues, WA
    Sharif, M
    [J]. FOUNDATIONS OF PHYSICS, 2001, 31 (12) : 1785 - 1806
  • [7] Testing Lorentz invariance with GRB 021206
    Boggs, SE
    Wunderer, CB
    Hurley, K
    Coburn, W
    [J]. ASTROPHYSICAL JOURNAL, 2004, 611 (02): : L77 - L80
  • [8] TESTING THE EINSTEIN EQUIVALENCE PRINCIPLE - ATOMIC CLOCKS AND LOCAL LORENTZ INVARIANCE
    GABRIEL, MD
    HAUGAN, MP
    [J]. PHYSICAL REVIEW D, 1990, 41 (10): : 2943 - 2955
  • [9] Corrigenda: Equivalence Principle and the Principle of Local Lorentz Invariance
    W. A. Rodrigues
    M. Sharif
    [J]. Foundations of Physics, 2002, 32 (5) : 811 - 812
  • [10] Testing the Equivalence Principle and Lorentz Invariance with PeV Neutrinos from Blazar Flares
    Wang, Zi-Yi
    Liu, Ruo-Yu
    Wang, Xiang-Yu
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (15)