Salmonella infection represents a considerable global burden, with significant health and economic impacts. Salmonellosis is most often attributed to the consumption of contaminated foods such as poultry, beef, pork, eggs, milk, seafood, nut products, and fresh produce. Increased public awareness related to food-borne contamination resulted in greater efforts to develop more sensitive, rapid, and inexpensive methods of pathogens detection. Loop-mediated isothermal amplification (LAMP) constitutes a promising solution for rapid diagnosis of food-borne pathogens and is increasingly been applied for the specific diagnosis of different pathogens, Salmonella included. We have reviewed the application of LAMP for the specific detection of Salmonella in food matrices, compared with conventional culture techniques, and in terms of applicability, food matrices, type of assays, target genes, assay temperature, time and equipment, specificity, sensitivity, and robustness. The pros and cons of Salmonella LAMP assays are presented. The potential of LAMP for the development of new on-site diagnostics for the food and agricultural industries and its use as a routine Salmonella screening tool are discussed. Salmonella-specific LAMP assays are expected to provide a very robust, innovative, and powerful molecular diagnostic method for food safety testing services and public health authorities.