Arithmetic mean of differences of Dedekind sums

被引:0
|
作者
Emre Alkan
Maosheng Xiong
Alexandru Zaharescu
机构
[1] University of Illinois at Urbana-Champaign,
来源
关键词
2000 Mathematics Subject Classification: 11F20; Key words: Dedekind sums, Kloosterman sums, Farey fractions;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Girstmair and Schoissengeier studied the asymptotic behavior of the arithmetic mean of Dedekind sums \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{\varphi(N)} \sum_{\mathop{\mathop{ 0 \le m< N}}\limits_{\gcd(m,N)=1}} \vert S(m,N)\vert$$\end{document}, as N → ∞. In this paper we consider the arithmetic mean of weighted differences of Dedekind sums in the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{h}(Q)=\frac{1}{\sum_{\frac{a}{q} \in {\cal F}_{Q}}h\left(\frac{a}{q}\right)} \times \sum_{\frac{a}{q} \in {\cal F}_{\!Q}}h\left(\frac{a}{q}\right) \vert s(a^{\prime},q^{\prime})-s(a,q)\vert$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h:[0,1] \rightarrow {\Bbb C}$\end{document} is a continuous function with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int_0^1 h(t) \, {\rm d} t \ne 0$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\frac{a}{q}}$\end{document} runs over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal F}_{\!Q}$\end{document}, the set of Farey fractions of order Q in the unit interval [0,1] and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\frac{a}{q}}<\frac{a^{\prime}}{q^{\prime}}$\end{document} are consecutive elements of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal F}_{\!Q}$\end{document}. We show that the limit limQ→∞Ah(Q) exists and is independent of h.
引用
下载
收藏
页码:175 / 187
页数:12
相关论文
共 50 条
  • [41] The mean value involving Dedekind sums and two-term exponential sums
    WANG TingTing & PAN XiaoWei Department of Mathematics
    Science China Mathematics, 2012, 55 (03) : 557 - 565
  • [42] On hybrid mean value of Dedekind sums and two-term exponential sums
    Wang, Tingting
    Zhang, Wenpeng
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (03) : 557 - 563
  • [43] The mean value involving Dedekind sums and two-term exponential sums
    Wang TingTing
    Pan XiaoWei
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (03) : 557 - 565
  • [44] The hybrid mean value of Dedekind sums and two-term exponential sums
    Chang Leran
    Li Xiaoxue
    OPEN MATHEMATICS, 2016, 14 : 436 - 442
  • [45] On hybrid mean value of Dedekind sums and two-term exponential sums
    Tingting Wang
    Wenpeng Zhang
    Frontiers of Mathematics in China, 2011, 6
  • [46] The mean value involving Dedekind sums and two-term exponential sums
    TingTing Wang
    XiaoWei Pan
    Science China Mathematics, 2012, 55 : 557 - 565
  • [47] Mean values of generalized Dedekind sums over short intervals
    Liu, Lei
    Xu, Zhefeng
    Wang, Ni
    ACTA ARITHMETICA, 2020, 193 (01) : 95 - 108
  • [48] On the k-polygonal numbers and the mean value of Dedekind sums
    Guo, Jing
    Li, Xiaoxue
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (02) : 409 - 415
  • [49] Mean values of Goss L-functions and Dedekind sums
    Hamahata, Yoshinori
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2015, 85 (02): : 187 - 196
  • [50] On the k-polygonal numbers and the mean value of Dedekind sums
    Jing Guo
    Xiaoxue Li
    Czechoslovak Mathematical Journal, 2016, 66 : 409 - 415