Recently, Girstmair and Schoissengeier studied the asymptotic behavior of the arithmetic mean of Dedekind sums \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{1}{\varphi(N)} \sum_{\mathop{\mathop{ 0 \le m< N}}\limits_{\gcd(m,N)=1}} \vert S(m,N)\vert$$\end{document}, as N → ∞. In this paper we consider the arithmetic mean of weighted differences of Dedekind sums in the form \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A_{h}(Q)=\frac{1}{\sum_{\frac{a}{q} \in {\cal F}_{Q}}h\left(\frac{a}{q}\right)} \times \sum_{\frac{a}{q} \in {\cal F}_{\!Q}}h\left(\frac{a}{q}\right) \vert s(a^{\prime},q^{\prime})-s(a,q)\vert$$\end{document}, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$h:[0,1] \rightarrow {\Bbb C}$\end{document} is a continuous function with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\int_0^1 h(t) \, {\rm d} t \ne 0$\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\frac{a}{q}}$\end{document} runs over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal F}_{\!Q}$\end{document}, the set of Farey fractions of order Q in the unit interval [0,1] and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\frac{a}{q}}<\frac{a^{\prime}}{q^{\prime}}$\end{document} are consecutive elements of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal F}_{\!Q}$\end{document}. We show that the limit limQ→∞Ah(Q) exists and is independent of h.