Arithmetic mean of differences of Dedekind sums

被引:0
|
作者
Emre Alkan
Maosheng Xiong
Alexandru Zaharescu
机构
[1] University of Illinois at Urbana-Champaign,
来源
关键词
2000 Mathematics Subject Classification: 11F20; Key words: Dedekind sums, Kloosterman sums, Farey fractions;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Girstmair and Schoissengeier studied the asymptotic behavior of the arithmetic mean of Dedekind sums \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{\varphi(N)} \sum_{\mathop{\mathop{ 0 \le m< N}}\limits_{\gcd(m,N)=1}} \vert S(m,N)\vert$$\end{document}, as N → ∞. In this paper we consider the arithmetic mean of weighted differences of Dedekind sums in the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{h}(Q)=\frac{1}{\sum_{\frac{a}{q} \in {\cal F}_{Q}}h\left(\frac{a}{q}\right)} \times \sum_{\frac{a}{q} \in {\cal F}_{\!Q}}h\left(\frac{a}{q}\right) \vert s(a^{\prime},q^{\prime})-s(a,q)\vert$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h:[0,1] \rightarrow {\Bbb C}$\end{document} is a continuous function with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int_0^1 h(t) \, {\rm d} t \ne 0$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\frac{a}{q}}$\end{document} runs over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal F}_{\!Q}$\end{document}, the set of Farey fractions of order Q in the unit interval [0,1] and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\frac{a}{q}}<\frac{a^{\prime}}{q^{\prime}}$\end{document} are consecutive elements of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal F}_{\!Q}$\end{document}. We show that the limit limQ→∞Ah(Q) exists and is independent of h.
引用
收藏
页码:175 / 187
页数:12
相关论文
共 50 条
  • [1] Arithmetic mean of differences of Dedekind sums
    Alkan, Emre
    Xiong, Maosheng
    Zaharescu, Alexandru
    [J]. MONATSHEFTE FUR MATHEMATIK, 2007, 151 (03): : 175 - 187
  • [2] On the arithmetic mean of Dedekind sums
    Girstmair, K
    Schoissengeier, J
    [J]. ACTA ARITHMETICA, 2005, 116 (02) : 189 - 198
  • [3] SOME ARITHMETIC ON DEDEKIND SUMS
    ASAI, T
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1986, 38 (01) : 163 - 172
  • [4] Mean values of dedekind sums
    Conrey, JB
    Fransen, E
    Klein, R
    Scott, C
    [J]. JOURNAL OF NUMBER THEORY, 1996, 56 (02) : 214 - 226
  • [5] On the mean value of Dedekind sums
    Jia, CH
    [J]. JOURNAL OF NUMBER THEORY, 2001, 87 (02) : 173 - 188
  • [6] ON THE MEAN VALUES OF DEDEKIND SUMS AND HARDY SUMS
    Liu, Huaning
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (01) : 187 - 213
  • [7] A hybrid mean value of Dedekind sums and Kloosterman sums
    Zhang Wenpeng
    Han Di
    [J]. JOURNAL OF NUMBER THEORY, 2015, 147 : 861 - 870
  • [8] On the mean value formula of dedekind sums
    Xiali He
    Wenpeng Zhang
    [J]. Acta Mathematica Sinica, 1999, 15 : 245 - 254
  • [9] ON THE FOURTH POWER MEAN OF THE DEDEKIND SUMS
    张文鹏
    [J]. 宁夏大学学报(自然科学版), 1999, (01) : 11 - 16
  • [10] MEAN VALUES OF THE HOMOGENEOUS DEDEKIND SUMS
    Wang, Xiaoying
    Yue, Xiaxia
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2015, 23 (04): : 571 - 590