Quantum mechanics in phase space: the Schrödinger and the Moyal representations

被引:0
|
作者
Nuno Costa Dias
Maurice de Gosson
Franz Luef
João Nuno Prata
机构
[1] Universidade de Lisboa,Grupo de Física Matemática
[2] Universität Wien,NuHAG, Fakultät für Mathematik
[3] University of California at Berkeley,Department of Mathematics
[4] Universidade Lusófona de Humanidades e Tecnologias,Departamento de Matemática
关键词
Phase Space; Unitary Transformation; Pseudodifferential Operator; Deformation Quantization; Heisenberg Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We present a phase space formulation of quantum mechanics in the Schrödinger representation and derive the associated Weyl pseudo-differential calculus. We prove that the resulting theory is unitarily equivalent to the standard “configuration space” formulation and show that it allows for a uniform treatment of both pure and mixed quantum states. In the second part of the paper we determine the unitary transformation (and its infinitesimal generator) that maps the phase space Schrödinger representation into another (called Moyal) representation, where the wave function is the cross-Wigner function familiar from deformation quantization. Some features of this representation are studied, namely the associated pseudo-differential calculus and the main spectral and dynamical results. Finally, the relation with deformation quantization is discussed.
引用
收藏
页码:367 / 398
页数:31
相关论文
共 50 条
  • [41] Propagation of Exponential Phase Space Singularities for Schrödinger Equations with Quadratic Hamiltonians
    Evanthia Carypis
    Patrik Wahlberg
    [J]. Journal of Fourier Analysis and Applications, 2017, 23 : 530 - 571
  • [42] Using Schrödinger cat quantum state for detection of a given phase shift
    Gorshenin, V. L.
    [J]. LASER PHYSICS LETTERS, 2024, 21 (06)
  • [43] Solutions of the Schrödinger equation in a Hilbert space
    Alexander Boichuk
    Oleksander Pokutnyi
    [J]. Boundary Value Problems, 2014
  • [44] Perspectives: Quantum Mechanics on Phase Space
    J. A. Brooke
    F. E. Schroeck
    [J]. International Journal of Theoretical Physics, 2005, 44 : 1889 - 1904
  • [45] Quantum mechanics on phase space and teleportation
    Juba Messamah
    Franklin E. Schroeck
    Mahmoud Hachemane
    Abdallah Smida
    Amel H. Hamici
    [J]. Quantum Information Processing, 2015, 14 : 1035 - 1054
  • [46] Quantum mechanics on phase space and teleportation
    Messamah, Juba
    Schroeck, Franklin E., Jr.
    Hachemane, Mahmoud
    Smida, Abdallah
    Hamici, Amel H.
    [J]. QUANTUM INFORMATION PROCESSING, 2015, 14 (03) : 1035 - 1054
  • [47] QUANTUM-MECHANICS ON PHASE SPACE
    HUGUENIN, P
    [J]. HELVETICA PHYSICA ACTA, 1973, 46 (04): : 468 - 468
  • [48] Phase space quantum mechanics - Direct
    Nasiri, S.
    Sobouti, Y.
    Taati, F.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (09)
  • [49] Perspectives: Quantum mechanics on phase space
    Brooke, JA
    Schroeck, FE
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (11) : 1889 - 1904
  • [50] Deformed Schrödinger symmetry on noncommutative space
    R. Banerjee
    [J]. The European Physical Journal C - Particles and Fields, 2006, 47 : 541 - 545