Quantum mechanics in phase space: the Schrödinger and the Moyal representations

被引:0
|
作者
Nuno Costa Dias
Maurice de Gosson
Franz Luef
João Nuno Prata
机构
[1] Universidade de Lisboa,Grupo de Física Matemática
[2] Universität Wien,NuHAG, Fakultät für Mathematik
[3] University of California at Berkeley,Department of Mathematics
[4] Universidade Lusófona de Humanidades e Tecnologias,Departamento de Matemática
关键词
Phase Space; Unitary Transformation; Pseudodifferential Operator; Deformation Quantization; Heisenberg Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We present a phase space formulation of quantum mechanics in the Schrödinger representation and derive the associated Weyl pseudo-differential calculus. We prove that the resulting theory is unitarily equivalent to the standard “configuration space” formulation and show that it allows for a uniform treatment of both pure and mixed quantum states. In the second part of the paper we determine the unitary transformation (and its infinitesimal generator) that maps the phase space Schrödinger representation into another (called Moyal) representation, where the wave function is the cross-Wigner function familiar from deformation quantization. Some features of this representation are studied, namely the associated pseudo-differential calculus and the main spectral and dynamical results. Finally, the relation with deformation quantization is discussed.
引用
收藏
页码:367 / 398
页数:31
相关论文
共 50 条
  • [1] Quantum mechanics in phase space: the Schrodinger and the Moyal representations
    Dias, Nuno Costa
    de Gosson, Maurice
    Luef, Franz
    Prata, Joao Nuno
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2012, 3 (04) : 367 - 398
  • [2] The Moyal-Lie theory of phase space quantum mechanics
    Hakioglu, T
    Dragt, AJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (34): : 6603 - 6615
  • [3] Diffusion-Schrödinger Quantum Mechanics
    V. V. Lasukov
    T. V. Lasukova
    O. V. Lasukova
    V. V. Novoselov
    [J]. Russian Physics Journal, 2014, 57 : 490 - 497
  • [4] Locality in the Schrödinger Picture of Quantum Mechanics
    Vedral, Vlatko
    [J]. PHYSICS, 2024, 6 (02): : 793 - 800
  • [5] On phase-space representations of quantum mechanics
    Wlodarz, JJ
    [J]. PHYSICS LETTERS A, 2001, 286 (2-3) : 97 - 101
  • [6] A fast algorithm for the Schrödinger equation in quaternionic quantum mechanics
    Jiang, Tongsong
    Guo, Zhenwei
    Zhang, Dong
    Vasil'ev, V. I.
    [J]. APPLIED MATHEMATICS LETTERS, 2024, 150
  • [7] On Schrödinger-Hermite Operators in Lattice Quantum Mechanics
    Andreas Ruffing
    [J]. Letters in Mathematical Physics, 1999, 47 : 197 - 214
  • [8] “Einstein Moon”,“Schrdinger Cat”,and “Quantity in Phase Space”—About Quantum Measurement(Ⅰ)
    REN De-Ming Department of Physics
    [J]. Communications in Theoretical Physics, 2004, 41 (06) : 833 - 836
  • [9] On coherent-state representations of quantum mechanics: Wave mechanics in phase space
    Moller, KB
    Jorgensen, TG
    TorresVega, G
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (17): : 7228 - 7240
  • [10] Transformation theory for phase-space representations of quantum mechanics
    Wilkie, Joshua
    Brumer, Paul
    [J]. Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (06): : 064101 - 064101