Interaction of the signaling state analog and the apoprotein form of the orange carotenoid protein with the fluorescence recovery protein

被引:0
|
作者
Marcus Moldenhauer
Nikolai N. Sluchanko
Neslihan N. Tavraz
Cornelia Junghans
David Buhrke
Mario Willoweit
Leonardo Chiappisi
Franz-Josef Schmitt
Vladana Vukojević
Evgeny A. Shirshin
Vladimir Y. Ponomarev
Vladimir Z. Paschenko
Michael Gradzielski
Eugene G. Maksimov
Thomas Friedrich
机构
[1] Technische Universität Berlin,Institut für Chemie Sekr. PC 14
[2] Russian Academy of Sciences,A.N. Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology”
[3] Technische Universität Berlin,Institut für Chemie Sekr. TC 7
[4] Karolinska Institutet,Department of Clinical Neuroscience, Center for Molecular Medicine
[5] M.V. Lomonosov Moscow State University,Department of Quantum Electronics, Faculty of Physics
[6] M.V. Lomonosov Moscow State University,Department of Biophysics, Faculty of Biology
来源
Photosynthesis Research | 2018年 / 135卷
关键词
Orange carotenoid protein; Fluorescence recovery protein; Fluorescein-maleimide; Site-specific fluorescence labeling; Mass spectroscopy; Fluorescence correlation spectroscopy;
D O I
暂无
中图分类号
学科分类号
摘要
Photoprotection in cyanobacteria relies on the interplay between the orange carotenoid protein (OCP) and the fluorescence recovery protein (FRP) in a process termed non-photochemical quenching, NPQ. Illumination with blue-green light converts OCP from the basic orange state (OCPO) into the red-shifted, active state (OCPR) that quenches phycobilisome (PBs) fluorescence to avoid excessive energy flow to the photosynthetic reaction centers. Upon binding of FRP, OCPR is converted to OCPO and dissociates from PBs; however, the mode and site of OCPR/FRP interactions remain elusive. Recently, we have introduced the purple OCPW288A mutant as a competent model for the signaling state OCPR (Sluchanko et al., Biochim Biophys Acta 1858:1–11, 2017). Here, we have utilized fluorescence labeling of OCP at its native cysteine residues to generate fluorescent OCP proteins for fluorescence correlation spectroscopy (FCS). Our results show that OCPW288A has a 1.6(±0.4)-fold larger hydrodynamic radius than OCPO, supporting the hypothesis of domain separation upon OCP photoactivation. Whereas the addition of FRP did not change the diffusion behavior of OCPO, a substantial compaction of the OCPW288A mutant and of the OCP apoprotein was observed. These results show that sufficiently stable complexes between FRP and OCPW288A or the OCP apoprotein are formed to be detected by FCS. 1:1 complex formation with a micromolar apparent dissociation constant between OCP apoprotein and FRP was confirmed by size-exclusion chromatography. Beyond the established OCP/FRP interaction underlying NPQ cessation, the OCP apoprotein/FRP interaction suggests a more general role of FRP as a scaffold protein for OCP maturation.
引用
收藏
页码:125 / 139
页数:14
相关论文
共 50 条
  • [31] The Photoactive Orange Carotenoid Protein and Photoprotection in Cyanobacteria
    Kirilovsky, Diana
    RECENT ADVANCES IN PHOTOTROPHIC PROKARYOTES, 2010, 675 : 139 - 159
  • [32] Changing Color for Photoprotection: The Orange Carotenoid Protein
    Muzzopappa, Fernando
    Kirilovsky, Diana
    TRENDS IN PLANT SCIENCE, 2020, 25 (01) : 92 - 104
  • [33] The orange carotenoid protein of Synechocystis PCC 6803
    Wu, YP
    Krogmann, DW
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1997, 1322 (01): : 1 - 7
  • [34] The photocycle of orange carotenoid protein conceals distinct intermediates and asynchronous changes in the carotenoid and protein components
    E. G. Maksimov
    N. N. Sluchanko
    Y. B. Slonimskiy
    E. A. Slutskaya
    A. V. Stepanov
    A. M. Argentova-Stevens
    E. A. Shirshin
    G. V. Tsoraev
    K. E. Klementiev
    O. V. Slatinskaya
    E. P. Lukashev
    T. Friedrich
    V. Z. Paschenko
    A. B. Rubin
    Scientific Reports, 7
  • [35] Chemical activation of the cyanobacterial orange carotenoid protein
    King, Jeremy D.
    Liu, Haijun
    He, Guannan
    Orf, Gregory S.
    Blankenship, Robert E.
    FEBS LETTERS, 2014, 588 (24) : 4561 - 4565
  • [36] Effects of phosphate on photoactivity of the Orange Carotenoid Protein
    Slatinskaya, O.
    Maksimov, G.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2019, 48 : S138 - S138
  • [37] The photocycle of orange carotenoid protein conceals distinct intermediates and asynchronous changes in the carotenoid and protein components
    Maksimov, E. G.
    Sluchanko, N. N.
    Slonimskiy, Y. B.
    Slutskaya, E. A.
    Stepanov, A. V.
    Argentova-Stevens, A. M.
    Shirshin, E. A.
    Tsoraev, G. V.
    Klementiev, K. E.
    Slatinskaya, O. V.
    Lukashev, E. P.
    Friedrich, T.
    Paschenko, V. Z.
    Rubin, A. B.
    SCIENTIFIC REPORTS, 2017, 7
  • [38] Photoactivation Mechanism, Timing of Protein Secondary Structure Dynamics and Carotenoid Translocation in the Orange Carotenoid Protein
    Konold, Patrick E.
    van Stokkum, Ivo H. M.
    Muzzopappa, Fernando
    Wilson, Adjele
    Groot, Marie-Louise
    Kirilovsky, Diana
    Kennis, John T. M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (01) : 520 - 530
  • [39] The Orange Carotenoid Protein: a blue-green light photoactive protein
    Diana Kirilovsky
    Cheryl A. Kerfeld
    Photochemical & Photobiological Sciences, 2013, 12 : 1135 - 1143
  • [40] The Orange Carotenoid Protein: a blue-green light photoactive protein
    Kirilovsky, Diana
    Kerfeld, Cheryl A.
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2013, 12 (07) : 1135 - 1143