Magnetic properties of mixed Ising nanoparticles with core-shell structure

被引:0
|
作者
Ersin Kantar
Bayram Deviren
Mustafa Keskin
机构
[1] Institute of Science,Department of Physics
[2] Erciyes University,Department of Physics
[3] Erciyes University,undefined
[4] Nevsehir University,undefined
来源
关键词
Statistical and Nonlinear Physics;
D O I
暂无
中图分类号
学科分类号
摘要
Magnetic properties of Ising nanoparticles with spin-1/2 core and spin-3/2 shell structure are systematically studied by the use of the effective-field theory with correlations. Particular emphasis is given to the effects of the crystal-field, core and shell interactions and interface coupling on magnetizations, compensations points, magnetic susceptibilities and hysteresis behaviors. In order to confirm the stability of the solutions we also investigate the free energy of the system. According to values of Hamiltonian parameters, the system only undergoes a second-order phase transition. A number of characteristic behaviors are found, such as the existence of triple hysteresis loops for appropriate values of the system parameters affected by the crystal field, temperature, and interface coupling. Moreover, Q-, R-, N-, M-, P- and S-types of compensation behaviors in the Néel classification nomenclature exist in the system that are also strongly dependent on interaction parameters; hence, one or two compensation points have been found. The results are compared with those of recently published works and a qualitatively good agreement is found.
引用
收藏
相关论文
共 50 条
  • [21] Tunability in Crystallinity and Magnetic Properties of Core-Shell Fe Nanoparticles
    Singh, Gurvinder
    Kumar, Puri Anil
    Lundgren, Christopher
    van Helvoort, Antonius T. J.
    Mathieu, Roland
    Wahlstrom, Erik
    Glomm, Wilhelm R.
    [J]. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2014, 31 (10) : 1054 - 1059
  • [22] Magnetic thermoresponsive core-shell nanoparticles
    Gelbrich, T
    Feyen, M
    Schmidt, AM
    [J]. MACROMOLECULES, 2006, 39 (09) : 3469 - 3472
  • [23] Synthesis and properties of magnetic-optical core-shell nanoparticles
    Kwizera, Elyahb Allie
    Chaffin, Elise
    Wang, Yongmei
    Huang, Xiaohua
    [J]. RSC ADVANCES, 2017, 7 (28) : 17137 - 17153
  • [24] Synthesis and Magnetic Properties of FePt/Silica Core-Shell Nanoparticles
    Li, Cuixia
    Li, Zhihong
    Du, Xueyan
    Guo, Haixia
    [J]. ADVANCE IN ECOLOGICAL ENVIRONMENT FUNCTIONAL MATERIALS AND ION INDUSTRY II, 2011, 178 : 291 - +
  • [25] Magnetic properties of monodispersed Ni/NiO core-shell nanoparticles
    Seto, T
    Akinaga, H
    Takano, F
    Koga, K
    Orii, T
    Hirasawa, M
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (28): : 13403 - 13405
  • [26] Laser synthesis and magnetic properties of monodispersed core-shell nanoparticles
    Seto, T
    Koga, K
    Akinaga, H
    Takano, F
    Sakiyama, K
    Hirasawa, M
    Orii, T
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 79 (4-6): : 1165 - 1167
  • [27] Magnetic and optical properties of multifunctional core-shell radioluminescence nanoparticles
    Chen, Hongyu
    Colvin, Daniel C.
    Qi, Bin
    Moore, Thomas
    He, Jian
    Mefford, O. Thompson
    Alexis, Frank
    Gore, John C.
    Anker, Jeffrey N.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (25) : 12802 - 12809
  • [28] Phase diagrams of a mixed-spin hexagonal Ising nanotube with core-shell structure
    Hachem, N.
    Badrour, I. A.
    El Antari, A.
    Lafhal, A.
    Madani, M.
    El Bouziani, M.
    [J]. CHINESE JOURNAL OF PHYSICS, 2021, 71 : 12 - 21
  • [29] Study on Extinction Properties of Nanoparticles with Hybrid Core-Shell Structure
    Liu, Jing
    Lin, Zijie
    Fang, Jianlian
    Chen, Jianrong
    Yang, Cheng-Fu
    [J]. SENSORS AND MATERIALS, 2016, 28 (05) : 447 - 454
  • [30] Controlled growth of Ni/NiO core-shell nanoparticles: Structure, morphology and tuning of magnetic properties
    D'Addato, S.
    Spadaro, M. C.
    Luches, P.
    Grillo, V.
    Frabboni, S.
    Valeri, S.
    Ferretti, A. M.
    Capetti, E.
    Ponti, A.
    [J]. APPLIED SURFACE SCIENCE, 2014, 306 : 2 - 6