Rotation Numbers and Rotation Classes on One-Dimensional Tiling Spaces

被引:0
|
作者
José Aliste-Prieto
Betseygail Rand
Lorenzo Sadun
机构
[1] Universidad Andres Bello,Departamento de Matemáticas
[2] Texas Lutheran University,Department of Mathematics
[3] University of Texas,Department of Mathematics
来源
Annales Henri Poincaré | 2021年 / 22卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We extend rotation theory of circle maps to tiling spaces. Specifically, we consider a one-dimensional tiling space Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} with finite local complexity and study self-maps F that are homotopic to the identity and whose displacements are strongly pattern equivariant. In place of the familiar rotation number, we define a cohomology class [μ]∈Hˇ1(Ω,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mu ] \in {\check{H}}^1(\Omega , {\mathbb {R}})$$\end{document}. We prove existence and uniqueness results for this class, develop a notion of irrationality, and prove an analogue of Poincaré’s theorem: If [μ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mu ]$$\end{document} is irrational, then F is semi-conjugate to uniform translation on a space Ωμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _\mu $$\end{document} of tilings that is homeomorphic to Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. In such cases, F is semi-conjugate to uniform translation on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} itself if and only if [μ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mu ]$$\end{document} lies in a certain subspace of Hˇ1(Ω,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\check{H}}^1(\Omega , {\mathbb {R}})$$\end{document}.
引用
收藏
页码:2161 / 2193
页数:32
相关论文
共 50 条
  • [31] Enhancement of Faraday rotation in defect modes of one-dimensional magnetophotonic crystals
    Jalali, Tahmineh
    Gharaati, Abdolrasoul
    Rastegar, Mohammad
    [J]. MATERIALS SCIENCE-POLAND, 2019, 37 (03) : 446 - 453
  • [32] Giant Faraday Rotation in One-Dimensional Photonic Crystal with Magnetic Defect
    Eliseeva, Svetlana V.
    Nasedkina, Yuliya F.
    Sementsov, Dmitrij I.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2016, 51 : 131 - 138
  • [33] One-Dimensional Tiling Semigroups and Factorial Languages
    McAlister, Donald B.
    Soares, Filipa
    [J]. COMMUNICATIONS IN ALGEBRA, 2009, 37 (01) : 276 - 295
  • [34] THE TILING SEMIGROUPS OF ONE-DIMENSIONAL PERIODIC TILINGS
    Dombi, E. R.
    Gilbert, N. D.
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 87 (02) : 153 - 160
  • [35] Rotation numbers of Hamiltonian isotopies in complex projective spaces
    Theret, D
    [J]. DUKE MATHEMATICAL JOURNAL, 1998, 94 (01) : 13 - 27
  • [36] Hindered Rotation of Methane Molecules in the One-Dimensional Nanochannel of a Porous Coordination Polymer
    Kubota, Yoshiki
    Takata, Masaki
    Kitaura, Ryo
    Matsuda, Ryotaro
    Kobayashi, Tatsuo C.
    Kitagawa, Susumu
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (01) : 69 - 76
  • [37] Robustness and an application of a one-dimensional window-map based on rotation dynamics
    Matsuoka, Yusuke
    [J]. IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2012, 3 (04): : 533 - 545
  • [38] STUDY OF ONE-DIMENSIONAL HINDERED ROTATION IN NH3OHCLO4
    PRINCE, E
    DICKENS, B
    RUSH, JJ
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1974, 30 (MAY15): : 1167 - 1172
  • [39] Invariant correlation to position, rotation and scale using one-dimensional composite filters
    Chaparro-Magallanez, Gildardo
    Alvarez-Borrego, Josue
    Solorza, Selene
    [J]. 22ND CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: LIGHT FOR THE DEVELOPMENT OF THE WORLD, 2011, 8011
  • [40] Regularity of the Rotation Number for the One-Dimensional Time-Continuous Schrodinger Equation
    Amor, Sana Hadj
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (04) : 331 - 342