Rotation Numbers and Rotation Classes on One-Dimensional Tiling Spaces

被引:0
|
作者
José Aliste-Prieto
Betseygail Rand
Lorenzo Sadun
机构
[1] Universidad Andres Bello,Departamento de Matemáticas
[2] Texas Lutheran University,Department of Mathematics
[3] University of Texas,Department of Mathematics
来源
Annales Henri Poincaré | 2021年 / 22卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We extend rotation theory of circle maps to tiling spaces. Specifically, we consider a one-dimensional tiling space Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} with finite local complexity and study self-maps F that are homotopic to the identity and whose displacements are strongly pattern equivariant. In place of the familiar rotation number, we define a cohomology class [μ]∈Hˇ1(Ω,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mu ] \in {\check{H}}^1(\Omega , {\mathbb {R}})$$\end{document}. We prove existence and uniqueness results for this class, develop a notion of irrationality, and prove an analogue of Poincaré’s theorem: If [μ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mu ]$$\end{document} is irrational, then F is semi-conjugate to uniform translation on a space Ωμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _\mu $$\end{document} of tilings that is homeomorphic to Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. In such cases, F is semi-conjugate to uniform translation on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} itself if and only if [μ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mu ]$$\end{document} lies in a certain subspace of Hˇ1(Ω,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\check{H}}^1(\Omega , {\mathbb {R}})$$\end{document}.
引用
收藏
页码:2161 / 2193
页数:32
相关论文
共 50 条