A second-order dynamic subgrid-scale stress model

被引:0
|
作者
Hongrui G. [1 ]
Shiyi C. [2 ]
Guowei H. [3 ]
Nianzhen C. [2 ]
机构
[1] Center for Adaptive Systems Application, Inc., Los Alamos, NM 87544
[2] Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos
[3] Loboratory for Nonlinear Mechanics, Institute of Mechanics, Academia Sinica
关键词
Dynamic model; Smagorinsky model; Subgrid-scale stress model; Turbulent flow;
D O I
10.1007/BF02458516
中图分类号
学科分类号
摘要
A second-order dynamic model based on the general relation between the subgrid-scale stress and the velocity gradient tensors was proposed. A priori test of the second-order model was made using moderate resolution direct numerical simulation date at high Reynolds number (Taylor microscale Reynolds number Rλ = 102-216) for homogeneous, Isotropic forced flow, decaying flow, and homogeneous rotating flow. Numerical testing shows that the second-order dynamic model significantly improves the correlation coefficient when compared to the first-order dynamic models.
引用
收藏
页码:165 / 172
页数:7
相关论文
共 50 条
  • [31] A dynamic subgrid-scale model for the large eddy simulation of stratified flow
    Ningyu Liu
    Xiyun Lu
    Lixian Zhuang
    Science in China Series A: Mathematics, 2000, 43 : 391 - 399
  • [32] A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar
    Pierce, CD
    Moin, P
    PHYSICS OF FLUIDS, 1998, 10 (12) : 3041 - 3044
  • [33] Non-Boussinesq subgrid-scale model with dynamic tensorial coefficients
    Agrawal, Rahul
    Whitmore, Michael P.
    Griffin, Kevin P.
    Bose, Sanjeeb T.
    Moin, Parviz
    PHYSICAL REVIEW FLUIDS, 2022, 7 (07):
  • [34] Realizable versus non-realizable dynamic subgrid-scale stress models
    Heinz, Stefan
    Gopalan, Harish
    PHYSICS OF FLUIDS, 2012, 24 (11)
  • [35] Comment on "A dynamic nonlinear subgrid-scale stress model" [Phys. Fluids 17, 035109, (2005)]
    Heinz, S
    PHYSICS OF FLUIDS, 2005, 17 (09)
  • [36] Subgrid-scale modeling
    Valdettaro, L.
    Stellar Fluid Dynamics and Numerical Simulations: From the Sun to Neutron Stars, 2006, 21 : 197 - 218
  • [37] The subgrid-scale estimation model on nonuniform grids
    Loh, KC
    Domaradzki, JA
    PHYSICS OF FLUIDS, 1999, 11 (12) : 3786 - 3792
  • [38] Subgrid-scale diffusivity: Wall behavior and dynamic methods
    Brillant, Guillaume
    Husson, Sabine
    Bataille, Franpise
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2006, 73 (03): : 360 - 367
  • [39] A dynamic subgrid-scale model for low-Reynolds-number channel flow
    Zhao, H
    Voke, PR
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1996, 23 (01) : 19 - 27
  • [40] A dynamic mixed nonlinear subgrid-scale model for large-eddy simulation
    Yang Zhengjun
    Wang Fujun
    ENGINEERING COMPUTATIONS, 2012, 29 (7-8) : 778 - 791