The theoretical model of the steady-state immobilized enzyme electrodes is discussed. This model is based on diffusion equation containing a non-linear term related to Michaelis–Menten kinetics of the enzymatic reaction. Homotopy perturbation method (HPM) is employed to solve the non-linear diffusion equation for the steady-state condition. Simple and approximate polynomial expression of concentration and flux are derived for all small values of parameters \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\phi_p}$$\end{document} (Theiele modulus) and β (kinetic parameter). Furthermore, in this work the numerical solution of the problem is also reported using SCILAB/MATLAB program. The analytical results are compared with the numerical results and found to be in good agreement.
机构:
Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan
Waseda Univ, Res Inst Sci & Engn, Tokyo, JapanWaseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan
Bhowmik, Mrinal
Gohain, Karanjeet
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Guwahati, Dept Mech Engn, Gauhati 781039, Assam, IndiaWaseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan
Gohain, Karanjeet
Muthukumar, P.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Tirupati, Dept Mech Engn, Tirupati 517619, Andhra Pradesh, IndiaWaseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan
Muthukumar, P.
Saito, Kiyoshi
论文数: 0引用数: 0
h-index: 0
机构:
Waseda Univ, Dept Appl Mech & Aerosp Engn, Tokyo 1698555, JapanWaseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan