Weighted Dirichlet-type inequalities for Steiner symmetrization

被引:0
|
作者
F. Brock
机构
[1] Fakultät für Mathematik und Informatik,
[2] Universität Leipzig,undefined
[3] Augustusplatz 10,undefined
[4] D-04109 Leipzig,undefined
[5] Germany ,undefined
关键词
Mathematics Subject Classification (1991):26D10, 51M16, 35J20, 35B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper weighted Dirichlet-type inequalities for Steiner symmetrization are proved. Similar inequalities were known for the so-called starshaped rearrangements. Furthermore it is shown that the Steiner symmetrization is a mapping from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $W^{1,1} _+ ({\Bbb R}^n)$\end{document} into itself.
引用
收藏
页码:15 / 25
页数:10
相关论文
共 50 条
  • [41] Generalized Hilbert operator on the Dirichlet-type space
    Li, Songxiao
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) : 304 - 309
  • [42] Steiner symmetrization: a weighted version of Pólya-Szegö principle
    Luca Esposito
    Cristina Trombetti
    Nonlinear Differential Equations and Applications NoDEA, 2007, 14 : 219 - 231
  • [43] GENERALIZED CESàRO OPERATORS ON DIRICHLET-TYPE SPACES
    金建军
    唐树安
    Acta Mathematica Scientia, 2022, (01) : 212 - 220
  • [44] ENTROPY SOLUTION FOR A NONLINEAR DEGENERATE ELLIPTIC PROBLEM WITH DIRICHLET-TYPE BOUNDARY CONDITION IN WEIGHTED SOBOLEV SPACES
    Sabri, A.
    Jamea, A.
    Alaoui, H. T.
    MATEMATICHE, 2021, 76 (01): : 109 - 131
  • [45] WEAK SOLUTION FOR NONLINEAR DEGENERATE ELLIPTIC PROBLEM WITH DIRICHLET-TYPE BOUNDARY CONDITION IN WEIGHTED SOBOLEV SPACES
    Sabri, Abdelali
    Jamea, Ahmed
    Alaoui, Hamad Talibi
    Jadida, El
    MATHEMATICA BOHEMICA, 2022, 147 (01): : 113 - 129
  • [46] Weighted norm inequalities for the Dirichlet transform
    Kerman, Ronald
    Phipps, Colin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) : 637 - 641
  • [47] SMOOTHNESS OF THE STEINER SYMMETRIZATION
    Lin, Youjiang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (01) : 345 - 357
  • [48] Toeplitz Operators on Dirichlet-Type Space of Unit Ball
    Xia, Jin
    Wang, Xiaofeng
    Cao, Guangfu
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [49] Lacunary Series in Dirichlet-Type Spaces and Pseudoanalytic Extension
    Ruishen Qian
    Songxiao Li
    Computational Methods and Function Theory, 2018, 18 : 409 - 425
  • [50] Essential Norm of Toeplitz Operators on Dirichlet-Type Spaces
    Jianjun CHEN
    Jiesheng XIAO
    Journal of Mathematical Research with Applications, 2021, 41 (04) : 393 - 400