Weighted Dirichlet-type inequalities for Steiner symmetrization

被引:0
|
作者
F. Brock
机构
[1] Fakultät für Mathematik und Informatik,
[2] Universität Leipzig,undefined
[3] Augustusplatz 10,undefined
[4] D-04109 Leipzig,undefined
[5] Germany ,undefined
关键词
Mathematics Subject Classification (1991):26D10, 51M16, 35J20, 35B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper weighted Dirichlet-type inequalities for Steiner symmetrization are proved. Similar inequalities were known for the so-called starshaped rearrangements. Furthermore it is shown that the Steiner symmetrization is a mapping from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $W^{1,1} _+ ({\Bbb R}^n)$\end{document} into itself.
引用
下载
收藏
页码:15 / 25
页数:10
相关论文
共 50 条
  • [1] Weighted Dirichlet-type inequalities for Steiner symmetrization
    Brock, F
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 8 (01) : 15 - 25
  • [2] Poincare inequalities and Steiner symmetrization
    Koskela, P
    Stanoyevitch, A
    ILLINOIS JOURNAL OF MATHEMATICS, 1996, 40 (03) : 365 - 389
  • [3] Isometric composition operators on weighted Dirichlet-type spaces
    Li-Gang Geng
    Ze-Hua Zhou
    Xing-Tang Dong
    Journal of Inequalities and Applications, 2012
  • [4] Multipliers of Dirichlet-Type Subspaces of Weighted Bloch Spaces
    Shen, Conghui
    Xu, Jingshi
    JOURNAL OF MATHEMATICAL STUDY, 2022, 55 (03) : 229 - 241
  • [5] Density of Polynomials in Certain Weighted Dirichlet-type Spaces
    Abkar, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (01)
  • [6] Isometric composition operators on weighted Dirichlet-type spaces
    Geng, Li-Gang
    Zhou, Ze-Hua
    Dong, Xing-Tang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [7] ANALYTIC m-ISOMETRIES AND WEIGHTED DIRICHLET-TYPE SPACES
    Ghara, Soumitra
    Gupta, Rajeev
    Reza, Md Ramiz
    JOURNAL OF OPERATOR THEORY, 2022, 88 (02) : 445 - 477
  • [8] A Local Douglas formula for Higher Order Weighted Dirichlet-Type Integrals
    Ghara, Soumitra
    Gupta, Rajeev
    Reza, Md. Ramiz
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (08)
  • [9] A Local Douglas formula for Higher Order Weighted Dirichlet-Type Integrals
    Soumitra Ghara
    Rajeev Gupta
    Md. Ramiz Reza
    The Journal of Geometric Analysis, 2023, 33
  • [10] Stability for the Dirichlet problem under continuous Steiner symmetrization
    Bucur, D
    Henrot, A
    POTENTIAL ANALYSIS, 2000, 13 (02) : 127 - 145