A Solution to Fuller’s Problem Using Constructions of Pontryagin’s Maximum Principle

被引:0
|
作者
Yu. N. Kiselev
M. V. Orlov
S. M. Orlov
机构
[1] Moscow State University,Department of Computational Mathematics and Cybernetics
关键词
Fuller problem; Pontryagin maximum principle; chattering regime;
D O I
10.3103/S0278641918040039
中图分类号
学科分类号
摘要
The classical two-dimensional Fuller problem is considered. The boundary value problem of Pontryagin’s maximum principle is considered. Based on the central symmetry of solutions to the boundary value problem, the Pontryagin maximum principle as a necessary condition of optimality, and the hypothesis of the form of the switching line, a solution to the boundary value problem is constructed and its optimality is substantiated. Invariant group analysis is in this case not used. The results are of considerable methodological interest.
引用
收藏
页码:152 / 162
页数:10
相关论文
共 50 条
  • [31] Pontryagin’s maximum principle for optimal impulsive control problems
    A. V. Arutyunov
    D. Yu. Karamzin
    F. Pereira
    Doklady Mathematics, 2010, 81 : 418 - 421
  • [32] Pontryagin's maximum principle for dynamic systems on time scales
    Bohner, Martin
    Kenzhebaev, Kenzhegaly
    Lavrova, Olga
    Stanzhytskyi, Oleksandr
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (07) : 1161 - 1189
  • [34] Pontryagin's maximum principle for constrained impulsive control problems
    Arutyunov, A. V.
    Karamzin, D. Yu.
    Pereira, F.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1045 - 1057
  • [35] Applicathion the Pontryagin's Maximum Principle to Optimal Economics Models
    Troshina, N. Yu
    Troshina, S., V
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2011, 11 (03): : 52 - 63
  • [36] Pontryagin's maximum principle for optimal control of an extrusion process
    Ma, Cheng-Cheng
    Sun, Bing
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2021, 52 (15) : 3226 - 3240
  • [37] Pontryagin's Maximum Principle for Optimal Impulsive Control Problems
    Arutyunov, A. V.
    Karamzin, D. Yu.
    Pereira, F.
    DOKLADY MATHEMATICS, 2010, 81 (03) : 418 - 421
  • [38] Formulation and Numerical Solution for Fractional Order Time Optimal Control Problem Using Pontryagin's Minimum Principle
    Tabatabaei, S. Sepehr
    Yazdanpanah, Mohammad Javad
    Tavazoei, Mohammad Saleh
    IFAC PAPERSONLINE, 2017, 50 (01): : 9224 - 9229
  • [39] Time-Optimal Tracking Control of Trains Using Pontryagin's Maximum Principle
    Chen Yao
    Dong Hairong
    Guan Fu
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 2392 - 2397
  • [40] Numerical - analytical approach to the solution of the boundary-value problem of the maximum principle of Pontryagin
    Bulychev, Yu.G.
    Manin, A.A.
    Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 1998, 37 (02): : 276 - 284