Minimal surfaces and symplectic structures of moduli spaces

被引:0
|
作者
Brice Loustau
机构
[1] Université Paris-Sud,Département de mathématiques d’Orsay, Bâtiment 425
来源
Geometriae Dedicata | 2015年 / 175卷
关键词
Minimal surfaces; Symplectic structures; Character varieties; Teichmüller theory; Almost-Fuchsian structures; Renormalized volume; 53D30; 53A10; 32G15;
D O I
暂无
中图分类号
学科分类号
摘要
Given a closed surface S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} of genus at least 2, we compare the symplectic structure of Taubes’ moduli space of minimal hyperbolic germs with the Goldman symplectic structure on the character variety X(S,PSL(2,C))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{X}}(S, { PSL}(2,{\mathbb {C}}))$$\end{document} and the affine cotangent symplectic structure on the space of complex projective structures CP(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{CP}}(S)$$\end{document} given by the Schwarzian parametrization. This is done in restriction to the moduli space of almost-Fuchsian structures by involving a notion of renormalized volume, used to relate the geometry of a minimal surface in a hyperbolic 3-manifold to the geometry of its ideal conformal boundary.
引用
收藏
页码:309 / 322
页数:13
相关论文
共 50 条